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Abstract

Shape recognition, which often involves topology in mathematics, is a fundamental

subfield of image recognition. Although deep learning techniques have been widely

applied to image recognition and have achieved great success, this is not the case

for 2D shape recognition. Inspired by the powerful spatial representation ability of

Graph Convolutional Networks (GCNs), we leverage this technique to address the

shape recognition problem. To this end, we propose a Boundary-Aware Shape Recog-

nition Graph Convolutional Network (BASR-GCN). To be specific, we first extract the

maximum boundary of the object depicted in an image and sample this boundary into

a set of key points. Given a key point, a set of features is then extracted as its repre-

sentation. Furthermore, we construct a series of graphs from the key points and use

the BASR-GCN to learn the spatial layout of these points. In addition, we introduce

a multi-scale BASR-GCN (BASR-GCN-MS) in order to exploit the shape features ex-

tracted at different scales. To our knowledge, GCNs have not been applied to 2D shape

recognition before. The proposed method is tested using four publicly available shape

data sets. Experimental results show that our method outperforms the baselines. We

believe that these promising results should be due to the fact that the BASR-GCN

captures the spatial layout and semantic information of the shape fulfilled by graph

convolutions.1
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1. Introduction

Shape, normally manifested in the form of a boundary, silhouette or skeleton, serves

as a crucial cue for object recognition within an image [1, 2, 3, 4, 5]. Despite the ab-

sence of other characteristics, such as color/intensity, brightness and texture, objects

can still be identified by humans via the shape cue. This phenomenon implies that

shape is insensitive to variations in lighting, color and texture [6]. Therefore, shape

can be used as a robust characteristic for shape retrieval and object recognition. In the

literature, shape recognition has been widely applied to many fields, including medical

image analysis[7], plant leaf identification [8], motion detection [9] and shape model-

ing [10].

However, the challenges to shape recognition mainly stem from the diversity changes

induced by deformations and occlusions. As a result, the research of shape recognition

has been focused on building reliable shape descriptors with sufficient discriminative

power [11, 12]. Ideally, these descriptors should be capable of capturing the shape

characteristics of a category under deformations and twists, while maintaining the dis-

tinctiveness across different categories.

Traditional shape recognition methods are normally built on top of low-level shape

descriptors for the sake of addressing the challenges. These descriptors can be di-

vided into three categories: region-based [13, 14, 15], boundary-based [16, 12] and

skeleton-based [17]. The region-based shape descriptors, e.g., Zernike moments [13],

are computed across the entire region of a shape, which are normally robust against

shape deformations and occlusions. Nevertheless, they are susceptible to noise and

struggle with capturing the intricate internal structure of shapes. The boundary-based

shape descriptors, for example, Bag of Contour Fragments (BoCF) [16], are normally

designed based on the spatial distribution of the boundary of an object. Thus, they are

relatively stable to affine transformations. Since those descriptors overlook the internal

information of the shape, they are sensitive to the non-rigid deformation and articu-

lation. Although the skeleton-based shape descriptors, e.g., Bag of Skeleton-Related

Contour Parts (BoSCP) [17], are able to encode the topological structure, geometric in-

formation and width variation of an object, they are sensitive to noise and deformation.

On the other hand, deep learning techniques have also been applied to shape recog-

nition [18, 19]. They are normally developed on top of the boundary or silhouette

images rather than the pure boundary, silhouette or skeleton data. In this case, the

shape cue is not explicitly utilized. Thus, the shape characteristics may not be ade-

quately exploited and the background may also impair the accuracy of shape recogni-

tion. Since Graph Convolutional Networks (GCNs) directly operate on non-Euclidean

graph structures, they are able to capture the topological relationships and long-range

dependencies between the nodes of a graph. In contrast, Convolutional Neural Net-

works (CNNs) rely on regular grid convolutions and are often biased toward texture,
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Figure 1: The illustration of the operation of the proposed BASR-GCN. Here, (a) and (b) show the silhouette

of an object and the key points sampled from the maximum boundary of it, respectively. In (c), the initial

graph is built by extracting features from these key points, in which the solid line denotes the spatial connec-

tion between two neighboring nodes and different colors suggest that the characteristics of neighboring nodes

are aggregated from different parts of the boundary. The result obtained after applying the graph convolution

to the graph is presented in (d), where the aggregated key points contain both the spatial and the semantic

information. The dashed line indicates that the selection of neighboring nodes is influenced by the semantic

information.

which makes them less effective at modeling the geometric continuity and global struc-

ture. Therefore, GCNs are better suited for shape recognition than CNNs.

To better exploit the shape characteristics, we are motivated to introduce a Boundary-

Aware Shape Recognition Graph Convolutional Network (BASR-GCN) by explicitly

exploiting the boundary cue. Specifically, the maximum boundary of the silhouette

(see Fig. 1(a)) of an object is first extracted. According to the contour integration

mechanism used by the Human Vision System (HVS), humans can still perceive the

shape of a contour even if it has been discretized into a set of fragments [20]. There-

fore, we discretize the boundary into a set of equidistant key points (see Fig. 1(b)) in

order to reduce the computational cost. A set of graphs (see Fig. 1(c)) is further con-

structed on top of the key points. The BASR-GCN learns the spatial layout of keypoints

through dynamic graph learning (see Fig. 1(d)). For the purpose of dynamically se-

lecting neighboring nodes, pairwise distances between keypoints at each convolutional

layer are computed in the feature space. As a result, the graph structure can be built

adaptively. To further leverage the shape features extracted at different scales, we also

propose a multi-scale BASR-GCN (BASR-GCN-MS), in which a shape is represented

by the keypoints sampled at multiple scales. In terms of each scale, feature represen-

tations are learned individually. All the features are concatenated into a single feature

vector, which encodes both fine and coarse shape characteristics.

To the best of our knowledge, GCNs have not been used in 2D shape recognition

before. Our contributions can be summarized as threefold.

• We make the first effort on applying graph convolutions to 2D shape recognition.

• We propose a Boundary-Aware Shape Recognition Graph Convolutional Net-

work (BASR-GCN) which integrates both the boundary and skeleton cues, en-
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abling the effective learning of both the spatial layout of a shape and the semantic

relationships between its different parts.

• To extract shape features at different scales, we also introduce a multi-scale

BASR-GCN, which is able to derive the complementary information across scales.

The remainder of this paper will be organized as follows. We review the related

work in Section 2. Our approach is introduced in Section 3. We describe the experi-

mental setup in Section 4. The experimental results and ablation study are reported in

Sections 5 and 6, respectively. Finally, we draw our conclusion in Section 7.

2. Related Work

2.1. Shape Recognition

Traditionally, shape recognition methods were designed based on hand-crafted shape

descriptors. These descriptors can be categorized into three classes: region-based,

boundary-based and skeleton-based. Region-based shape descriptors are normally de-

veloped by representing the shape of an object based on the silhouette information.

Zernike moments [13] leveraged a set of complex orthogonal polynomials to derive

the compact representation of shape geometries. Despite Zernike moments were ro-

bust to deformations and occlusions, they were sensitive to noise. The Angular Radial

Transformation (ART) method [14] represented a shape by measuring the distribution

of intensity values in the polar coordinates. This method may be affected when it deals

with complex or noisy shapes even though it is independent of rotation and scaling.

In [15], a convex hull was defined as the smallest convex polygon which enclosed a

set of points. Although convex hull simplifies complex shapes and identifies essential

features, it cannot capture the internal details and structure well.

Boundary-based shape descriptors were designed on top of the boundary of an ob-

ject. The shape context descriptor [12] encoded the relative spatial distribution of the

points sampled on the boundary. Inspired by the Bag of Features [21] methods, Wang

et al. [16] proposed the Bag of Contour Fragments (BoCF) descriptor, which used

Locally-Lonstrained Linear Coding (LLC) [22] to encode the features of contour frag-

ments. Ribas and Bruno [1] modeled shape boundaries as a directed complex network,

which extracted topological features, and leveraged randomized neural networks to ef-

ficiently learn discriminative representations. To extract features from various perspec-

tives, Blandon et al. [2] introduced a framework that combined the contour information

with a multi-view learning strategy, which enhanced the ability of the model to recog-

nize and classify complex shapes. In contrast, Giveki et al. [23] designed a shape

descriptor that captured diverse features from boundary pixels. A multi-view learning

strategy was also used to improve classification accuracy across different perspectives.
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Although the boundary-based shape descriptors are insensitive to affine transfor-

mations, they are sensitive to the non-rigid deformation because they do not take into

consideration the internal characteristics of the shape. Since the skeleton is able to

preserve the geometric information and topological structure of a shape, shape descrip-

tors have also been introduced based on this cue. Shen et al. [17] proposed the Bag

of Skeleton Paths (BoSP) descriptor, which exploited both the boundary and skeleton

cues. However, skeleton-based descriptors still struggle with noise, angle transforma-

tions and significant non-rigid deformations.

In the past decade, deep learning techniques have been widely used in computer vi-

sion [24, 25, 26, 27, 28]. Motivated by the success achieved in image recognition and

segmentation, Convolutional Neural Networks (CNNs) were applied to shape recogni-

tion, including the Shape Boltzmann Machine approach [18] and Shape Classification

Network (SCN) [19]. However, these methods normally use silhouette or boundary

images as the input rather than the pure silhouette, boundary or skeleton data. In other

words, the shape information is not explicitly exploited. In this situation, the shape

characteristics may not be sufficiently utilized while the background may impair the

discriminatory power of the model trained. Recently, Hossain et al. [29] developed a

framework, referred to as Invariant Shape Representation Learning (ISRL), to enhance

the robustness of image classifiers. Nevertheless, this framework used images rather

than the shape data.

In contrast, we explicitly utilize the boundary cue for shape representation, while

the skeleton cue is also used as an additional characteristic.

2.2. Graph Convolutional Networks

Graph Convolutional Networks (GCNs) have been extensively utilized in different

fields, including the point cloud data [30], social networks [31] and recommendation

engines [32]. Micheli [33] proposed an early form of spatial GCNs with composite

non-recursive layers. Spectral GCNs [34] used the spectrum of the graph Laplacian

to represent graphs. In [34], Kipf et al. introduced a semi-supervised classification

method based on GCNs. In particular, a GCN layer propagation rule was designed

through a local first-order approximation of spectral graph convolution, which realized

the linear scalability to the large-scale graph data. Inductive representation learning

was employed on large-scale graphs in the GraphSAGE method [35]. This method

efficiently generated embeddings for unseen data using node feature information and

optimized the full graph sampling to the partial neighbor sampling centered around the

node.

Traditional GCNs typically operate on a static adjacency matrix, which is built

based on inter-node connections and cannot be unaltered thereafter. In this situation,

the adjacency matrix has to be rebuilt once new nodes are introduced. To address this
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issue, Wang et al. [30] introduced a dynamic model which updated the graph structure

between layers. Within each round of update, a new set of K nearest points were de-

termined using K-Nearest Neighbors (KNN). To address the limitations of the existing

methods which relied on graph convolution or its approximations, the Graph Attention

Network (GAT) [36] employed a masked self-attention layer. Nodes were able to focus

on the features within their vicinity by stacking layers. Since GAT implicitly assigns

varying weights to different nodes in the neighborhood without requiring costly ma-

trix operations or the prior knowledge of the graph structure, it is suitable for both the

inductive and transductive problems.

Within the proposed BASR-GCN, a set of graphs are built from the key points

sampled from a boundary. GCNs are used to capture the spatial layout of the boundary.

Considering the key point data is similar to the point cloud data that the EdgeConv

[30] method processed, the BASR-GCN is built on top of the convolutional layer of

the EdgeConv. In addition, we introduce a multi-scale BASR-GCN which is able to

learn the spatial layout information of the shape at different scales. To our knowledge,

GCNs have not been used in 2D shape recognition before.

3. The Boundary-Aware Shape Recognition Graph Convolutional Network

For the sake of explicitly exploiting the boundary cue, we propose a Boundary-

Aware Shape Recognition Graph Convolutional Network (BASR-GCN). Specifically,

the maximum boundary of an object is first extracted. The boundary is discretized

into a series of key points. Regarding each key point, both the x and y coordinates

are used as its location features. The angle between this point and its preceding key

point is also calculated, which is utilized as the angle feature of the point. The nearest

skeleton point to each key point is then located and the x and y coordinates of this point

are employed as two additional features of the related key point. A set of graphs are

further built from the key points. The BASR-GCN is used to learn the spatial layout of

these points. To exploit the shape features extracted at different scales, we also design

a multi-scale BASR-GCN (BASR-GCN-MS). Figures 2 and 3 exhibit the architectures

of the proposed BASR-GCN and BASR-GCN-MS, respectively.

3.1. Overall Network Architecture

As illustrated in Fig. 2, we first extract the maximum boundary of the silhouette

of an object. A set of key points are derived which can be used to represent the shape

approximately. In terms of each key point, the nearest skeleton point is located. Fea-

ture extraction is then performed in order to obtain a compact representation of each

key point. The key points are then fed into the Stem block, which consists of three

one-dimensional convolutional layers and two GELU activation layers. This process
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introduces the diversity of features and adjusts the dimensionality of the features to the

number of channels of the features sent to the first GCN block. Furthermore, a series

of graphs are constructed on top of the key points. To capture both the spatial layout

and the semantic information of the shape, GCNs are applied to these graphs.

Inspired by the structure of CNNs, the proposed BASR-GCN is designed as a pyra-

midal architecture. This network contains four consecutive GCN blocks. Within each

block, a series of GCN layers are contained and the number of the channels of fea-

tures and the number of nodes are set to the same for different layers. The number of

nodes reduces from a block to the deeper block because the downsampling operation

is applied to the output of the prior block.

As the depth of the block increases, each node aggregates the information of the

adjacent nodes contained in the prior block. Consequently, selection of adjacent nodes

inclines towards encoding the semantic information of the shape. In other words, the

nodes from the other parts of the shape are selected as neighbors, which establishes the

connection between two different parts.

The node-level features learned by the GCN are fed into the adaptive average pool-

ing module. As a result, the graph-level embedding features are generated, which

integrate the topological spatial layout of the previously learned shape and the seman-

tic connections in the feature space. Finally, a set of key features which determine the

shape of an object are learned.

Besides, the structure of the proposed Multi-scale BASR-GCN (BASR-GCN-MS)

is illustrated in Fig. 3. As can be seen, the BASR-GCN is applied to three sets of

key points sampled at the small, middle and large scales, separately. The small-scale,

middle-scale and large-scale features learned at the three branches are fused and sent

to the prediction layer for shape recognition.

3.2. Key Point Sampling

The boundary of a shape, which embodies the global characteristics of the shape

and is insensitive to affine transformations, has been successfully applied to shape

recognition [16, 17]. Inspired by these studies, we first extracted the maximum bound-

ary of the shape of an object. Specifically, we adopted the method that Wang et al. [16]

proposed, which employed a contour tracing strategy based on the isocontour analysis

to extract the outer boundary of binary shapes. The process began with cropping and

filling operations to remove background regions near the image edges and to reduce

the influence of internal holes when identifying the maximum boundary.

The binary image was then treated as a scalar field, from which all isocontours cor-

responding to a fixed threshold slightly below 1 (e.g., 0.8) were extracted. This thresh-

old captured the transition between the foreground and background regions. Among

the resulting closed contours, the contour with the longest arc length was selected as
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the primary boundary of the shape. This selection helped to eliminate small internal

structures, noise-induced fragments, and holes, thus focusing the analysis on the over-

all contour of the object.

To mitigate the influence of redundant or overly dense points, the contour was sim-

plified and orientation standardized. The uniform arc-length interpolation was further

used to resample the contour into a fixed number of points, ensuring consistency and

comparability in the subsequent feature extraction process. These points were referred

to as key points.

3.3. Feature Extraction

With regard to each key point, the x and y coordinates are used as its location fea-

tures. We also calculate the arctangent value of the angle between each key point and its

preceding key point. This value is utilized as the angle feature of the key point. Consid-

ering that the features extracted on the boundary are incapable of adequately represent-

ing the internal characteristics of the shape, such as thickness and curvature, we first

extract the shape skeleton using the Adaptive Linear Span Network (Ada-LSN) that

Liu et al. [37] proposed and sample a set of skeleton points. The Ada-LSN automati-

cally fuses multi-scale deep features using a Neural Architecture Search (NAS)–driven

pyramid structure, namely, Linear Span Pyramid (LSP), by stacking multiple Linear

Span Units (LSUs) across different feature layers. Then the nearest skeleton point is

located by means of the nearest-neighbor search for each key point. Both the x and y
coordinates of this point are employed as two additional features of the associated key

point.

After feature extraction is complete, each key point is represented by a five-dimensional

feature vector. This vector is fed into the Stem block, which consists of three consec-

utive one-dimensional convolutional layers. The output of the Stem block will be sent

to the first GCN block.

Multi-scale image representation has been extensively applied and normally pro-

duces the better result, compared to the single-scale representation. To learn the fea-

tures of a shape at different scales, we sample three sets of key points at different scales

and apply the proposed BASR-GCN to each set individually. Correspondingly, three

sets of features are generated, which represent the characteristics of the shape at the

small, middle and large scales and are denoted as FS mall, FMid and FLarge, respectively.

The three sets of features are further fused by concatenating as:

FMS = Cat(FS mall, FMid, FLarge). (1)

In essence, FMS encodes the multi-scale characteristics of the shape and normally owns

the stronger discriminatory power than the features extracted at a single scale.
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3.4. Dynamic GCN Block

The static graph convolution is normally used in the existing graph convolution

studies [34]. During the convolution computation, the adjacency matrix of the graph

does not change. Although this design can save the computational cost and speed up the

computation, the original spatial adjacency relationship may not be enough for shape

recognition when the complex intra-class and inter-class changes occur, due to the high

similarity of the spatial distributions of different objects. To address this issue, we use

the dynamic graph convolution instead, which takes into account both the spatial layout

of the shape and the semantic relationship between different parts by continuously

updating the adjacency matrix and downsampling the nodes.

The proposed BASR-GCN contains four dynamic GCN blocks, which comprise

2, 2, 6 and 2 dynamic GCN layers, respectively. Within each block, the input is first

passed through different GCN layers. Then the output is processed by a downsampling

operation, in which the number of nodes is halved and the number of feature channels

is doubled, before they are sent to the next block. Specifically, the number of feature

channels is set to 80, 160, 320 and 640 in terms of the four blocks, respectively.

3.4.1. Dynamic GCN Layer

The dynamic GCN layer is adopted based on the graph convolutional layer that Han

et al. [38] proposed. In contrast to the original design, the adopted version has three

differences. First, we select a fixed number of node neighbors rather than increasing

the number of neighbors with the progress of the block because either excessive or

insufficient neighbors will impair the extraction of the semantic information of the

shape from the nodes. Second, we remove the position encoding component that Han

et al. [38] used to represent the positional adjacency relationship between nodes but

employ both the x and y coordinates of the key point instead. Third, we replace the

two-dimensional convolution used in [38] by the one-dimensional convolution in order

to process the key points.

Given a dynamic GCN layer, a one-dimensional convolutional layer is first used to

increase the diversity of features. Inspired by the existing work [39], we then calculate

the difference between the features of a node vi and the features of the other nodes and

select K nearest neighbors N(vi) for the node vi according to

N(vi) = KNNk(vi,V),∀vi ∈ V. (2)

Subsequently, we add an edge ei j from vi to every neighboring node v j contained in

N(vi), which can be expressed as

ei j = {vi, v j},∀v j ∈ N(vi). (3)
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The result is a sparse graph Gd = (V, E), where E = {ei j}.
The current dynamic GCN block updates the selection of neighboring nodes using

the KNN algorithm at each dynamic GCN layer. Thereby, the structure of the graph

is updated. In this case, the information exchange between different nodes gradually

varies from the nodes at the closest distance in the Euclidean space to the nodes with

the most similar features in the semantic space.

Furthermore, the graph convolution operation [38] is performed on the graph con-

structed. The key to graph convolution operations is the aggregation and update of the

information of adjacent nodes, which can be formulated as

G′ = F(G,W) = U pdate(Aggregate(G,Wagg),Wupdate), (4)

where G′ is the graph after the graph convolution operations have been conducted, F(·)
is a set of graph convolution operations, G is the graph before the graph convolution

operations are performed, W is the weighting coefficient, U pdate(·) and Aggregate(·)
denote the aggregation and update operations, respectively, and Wagg and Wupdate stand

for the weights used for the aggregation and update operations.

Given a node, the features of the neighboring nodes are aggregated in order to

compute the representation for the next layer. The update operation merges and updates

the features aggregated. These operations can be expressed as

x′i = u(xi, a(xi,K(xi),Wagg),Wupdate), (5)

where x′i denotes the node features derived after the aggregation and update opera-

tions have been performed, xi represents node features before these operations are con-

ducted, K(xi) stands for the neighboring nodes and a(·) is the aggregation operation.

To fulfil the above operations, we adopt the EdgeConv [30], which was originally

introduced for the point cloud data, because it can effectively extract local shape fea-

tures of the point cloud data and maintain the permutation invariance of these data.

Within the scenario of EdgeConv, the aggregation and update operations can be de-

fined as

xa = a(xi) = concat[xi, (x j − xi)],∀x j ∈ K(xi), (6)

x′i = u(xa) = xaWupdate, (7)

where xa and x′i represent the node features derived after the aggregation and update

operations, respectively. a(·) is the aggregation operation, which simply calculates the

difference between the features of xi and its neighboring node x j, and then concatenate

it with the features of xi. u(·) is the update operation in which the weight coefficient

after the aggregation is updated to obtain the node x′i .
The output of the Edgeconv is further fed into a one-dimensional convolutional
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layer in order to increase the diversity of the features again. The features processed

are sent to a Feedforward Neural Network (FFN). This network includes two one-

dimensional convolutional layers and a GELU activation function, which alleviates the

problem of over-smoothing. The output of the FFN is fed into the next layer or the

downsampling operation.

3.4.2. Mitigating Over-Smoothing

Within convolution operations, it is a common practice to stack a set of convolu-

tional layers for the sake of enhancing the performance of the model trained. However,

a rapid decrease in the performance, known as the over-smoothing phenomenon [40],

usually occurs when many convolutional layers are stacked in the scenario of GCNs.

This phenomenon should be attributed to the fact that graph convolutions aggregate

the information contained in neighboring nodes. With the number of layers increases,

the receptive field of the nodes will continuously expand. The features aggregated will

extend to all the nodes in the graph when the number of layers reaches a certain level.

As a result, the discrimination between nodes is impaired.

The depth of graph convolutions is extended by adding residual connections into

the ResGCN [39]. In this study, each node carries both the spatial and semantic infor-

mation related to its neighbors. When the graph convolution is performed at a deep

level, the neighbors of the node will spread across the full graph, due to the downsam-

pling and feature exchange operations. In this case, each key point of the boundary

becomes the neighbor of each of the other points. Therefore, the unique structure of

different shapes cannot be well represented. To address the over-smoothing issue, the

core is to make the nodes at the deep level more distinctive.

Motivated by the ResGCN [39], we introduce the residual connection into each

dynamic GCN layer for the purpose of alleviating the issue of over-smoothing. Con-

sidering that the linear transformation can be used to increase the diversity of fea-

tures, which also decreases the probability of over-smoothing, we further add a one-

dimensional convolutional layer before and after the graph convolutional layer and add

a Feedforward Neural Network (FFN) at the end of the dynamic GCN layer.

4. Experimental Setup

In this section, we first elaborate the four publicly available data sets that we used

in the shape recognition experiments. Then we introduce the performance metric used

in these experiments. Finally, the implementation details of the proposed networks are

described.
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Figure 4: Sixteen examples of the MPEG-7 [41] data set.

4.1. Data Sets

We used four publicly available data sets in total, including MPEG-7 [41], Animal

[42], Swedish Leaf [43] and Flavia [44]. We will introduce each data set as follows.

4.1.1. MPEG-7

The MPEG-7 [41] data set, provided by the Image Processing and Pattern Recog-

nition Research Group of Bielefeld University in Germany, has been widely utilized in

the field of shape recognition. This data set comprises 1,400 two-dimensional shapes

(refer to Fig. 4 for examples), which can be divided into 70 categories. Each cate-

gory contains 20 shape instances. Each shape instance is saved as a binary image. The

MPEG-7 data set is characterized by its diversity of shape categories, which covers

a broad range of objects, such as animals, people, plants, tools, vehicles, etc. This

data set also exhibits significant variations in shapes, for example, rotation, scaling,

translation, noise and occlusion. The data set has served as a useful tool for evaluat-

ing the performance of different shape descriptors and shape matching algorithms. In

this study, we randomly selected 10 images from each category as training images and

utilized the remaining 10 images of each category as testing images.

4.1.2. Swedish Leaf

The Swedish Leaf [43] data set originated from a leaf classification project, which

was conducted at Linköping University and the Swedish Museum of Natural History.

This data set encompasses 1,125 leaf images (refer to Fig. 5 for examples). These

images can be categorized into 15 distinct Swedish tree species. Each species com-

prises 75 leaves. Since the Swedish Leaf data set only contains color images, we first

binarized these images by simplistically applying the threshold of 127 to them. As a

result, those images were converted into silhouette images. Then the maximum bound-

ary of each silhouette image was extracted by following the BOCF [16] approach. We

randomly selected 25 images from each species as training images and utilized the

remaining 50 images in each species as testing images.

4.1.3. Flavia

As one of the most frequently utilized data sets in the domain of leaf recognition,

the Flavia [44] data set comprises 1,907 leaf images (refer to Fig. 6 for examples),
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Figure 5: Sixteen examples of the Swedish Leaf [43] data set.

Figure 6: Sixteen examples leaf images of the Flavia [44] data set.

which can be grouped into 32 species. The majority of the leaves included in the

Flavia data set are the common plants, which can be found in the Yangtze River Delta

region of China. Each species consists of at least 50 leaf images. Same as the Swedish

Leaf [43] data set, only color images are contained in the Flavia data set. We utilized

the same method to binarize these images into silhouette images and extract the maxi-

mum boundary from each silhouette image. In terms of each species, 945 images were

randomly selected as training images and the remaining images were used as testing

images.

4.1.4. Animal

The Animal [42] data set consists of 2,000 silhouette images (refer to Fig. 7 for

examples). These images were divided into 20 categories and each category comprises

100 images. Since the animal contained in the same category may show different poses

and different animals may manifest the resemblance in certain poses, the Animal data

set exhibits substantial intra-class variation, which makes the data set particularly chal-

lenging for the shape recognition task. We randomly selected 50 images from each

category as training images and used the remaining 50 images in each category as

testing images.
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Figure 7: Sixteen examples of the Animal [42] data set.

4.2. Performance Metric

To assess the performance of the proposed network or the existing baselines in

the shape recognition task, the recognition accuracy was utilized as the performance

metric, which can be defined as follows:

Accuracy =
Number of Correctly Recognized Samples

Number of All Samples
× 100%. (8)

Since this metric is able to reflect the capability of a shape recognition method in rep-

resenting and identifying shapes, it provides an intuitive measure for comparing our

approach against other methods.

4.3. Implementation Details

Table 1: Details of the parameters used during the training process.

Parameter Value

Epochs 500

Optimizer AdamW

Batch Size 16

Start Learning Rate (LR) 1 × 10−3
Number of KNN Neighbors 6

Dropout Probability 0.1

Use Stochastic True

Times of Data Augmentation 20

Small Scale 1,200

Middle Scale 700

Large Scale 300

Multi-scale [300, 700, 1200]

GCNs normally select neighboring nodes during the convolution computation. We

set the number of neighboring nodes selected, k, to 7 by taking into account the com-

position quantity of the semantic parts of a shape. GELU [45] was employed as the

non-linear activation function. For the purpose of mitigating overfitting, we set the

dropout probability to 0.1. To reduce the computational load, prevent overfitting and
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enhance the robustness of the graph, random GCN was utilized. Regarding the ran-

domization factor commonly used in the graph convolutions, we set it to 0 for the sake

of preventing the interference with the connections between different parts when GCNs

reach the deeper layers with the fewer nodes. Only the image rotation operation was

utilized for data augmentation prior to maximum boundary extraction, in which each

image was rotated at fixed angles starting from 30° and increasing by 15° up to 315°.

As a result, 20 additional images were obtained in terms of each shape. The details

of the parameters used during the training process are reported in Table 1. We imple-

mented the proposed BASR-GCN using PyTorch 1.13. The network was trained and

tested on a single NVIDIA 3090 GPU.

In this study, we sampled key points from a boundary at a fixed interval, which

indicates the scale where we extract shape representation. In total, three single scales

were used in our experiments, including small scale, middle scale and large scale, at

which 1,200, 700 and 300 key points were sampled from the boundary, respectively.

Regarding the BASR-GCN-MS, all the three scales were utilized in order to learn the

multi-scale representation. In terms of a data set, the experiment was performed on a

random split of it only once, unless otherwise specified.

5. Experimental Results

In this section, we report the experimental results obtained using the proposed

BASR-GCN along with three single scales and multiple scales on the four data sets.

Our results are also compared with those produced by the existing methods.

5.1. MPEG-7

The results derived using the proposed BASR-GCN and 15 baselines on theMPEG-

7 [41] data set are reported in Table 2. As can be seen, the multi-scale BASR-GCN out-

performed all its counterparts and achieved the accuracy of 99.14%. Eight misclassified

shape images together with eight shape images of the corresponding categories classi-

fied are shown in Fig. 8. It can be observed that the silhouette images of the ground-

truth and classified categories manifest similar boundaries and thicknesses, which pose

the challenge to the shape recognition task, even though there is a significant semantic

difference between both the categories, such as guitars and spoons.

5.2. Swedish Leaf

As reported in Table 3, the BASR-GCN outperformed all its counterparts on the

Swedish Leaf [43] data set, no matter what scales were used. In particular, the multi-

scale BASR-GCN produced the accuracy of 100%, which was higher than the best

result 98.74% achieved among the 15 baselines.
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Table 2: Comparison of the accuracy values obtained

using the proposed BASR-GCN together with different

scales and 15 baselines on the MPEG-7 [41] data set.

Method Accuracy (%)
Contour Segments [42] 91.10

Class Segment Set [46] 90.90

Skeleton Paths [42] 86.70

CNN-SCN [19] 90.99

EIFR-LR [2] 96.76

EIFR-LC [2] 96.77

FFNET [25] 95.57*

EfficientViT-m4 [24] 95.86*

ViG [38] 95.14*

ICS [42] 96.60

GHOSM [47] 97.40

BOCF [16] 97.16 ± 0.79

BoShUDL [48] 98.75

LCMR [49] 98.75

BoSCP [17] 98.41

BASR-GCN-Small (Ours) 98.14

BASR-GCN-Middle (Ours) 98.43

BASR-GCN-Large (Ours) 98.14

BASR-GCN-MS (Ours) 99.14
* The results of FFNET, EfficientViT and ViG were

obtained by running the original source code on the

MPEG-7 [41] data set.

Figure 8: Examples of the shape images misclassified by our BASR-GCN-MS on the MPEG-7 [41] data

set. The first row shows eight shape images which belong to different categories, including Fish, Dog, Dog,

Stef, Sea Snake, Guitar, respectively, while the second row displays eight shape images of the corresponding

misclassified categories which comprises Pencil, Horse, Horse, Watch, Lizzard, Spoon, respectively.

5.3. Flavia

As shown in Table 4, the multi-scale BASR-GCN yielded the better result than that

produced by a single-scale BASR-GCN and outperformed the 15 baseline methods on

the Flavia [44] data set. In Fig. 9, eight misclassified shape images together with

eight shape images of the corresponding categories classified are displayed. It can be

seen that the boundaries, thicknesses and skeletal topological structures of the leaves

contained in different categories exhibit the obvious similarity. This finding should be
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Table 3: Comparison of the accuracy values obtained

using the proposed BASR-GCN together with different

scales and 15 baselines on the Swedish Leaf [43] data

set.

Method Accuracy (%)
EIFR-LR [2] 96.34

EIFR-LC [2] 94.42

VGG16 (Pre-trained)-RF 96.13*

MTD+1-NN [50] 97.62

MTD + LBP-HF [50] 98.15

FFNET [25] 98.13*

EfficientViT-m4 [24] 97.87*

ViG [38] 98.53*

Deep-Plant [51] 97.54

LCMR [49] 98.33

HGO-CNN [50] 96.83

BOCF [16] 96.56

CBoW [52] 97.23

CRSA [1] 96.62

BoShUDL [48] 98.74

BASR-GCN-Small (Ours) 99.73

BASR-GCN-Middle (Ours) 99.73

BASR-GCN-Large (Ours) 99.60

BASR-GCN-MS (Ours) 100
* The results of FFNET, EfficientViT, ViG and

VGG16 (Pre-trained)-RF were obtained by running

the original source code on the Swedish Leaf [43]

data set.

responsible for the misclassification that our method produced.

Fig. 10 presents the confusion matrix plotted using the results of our BASR-GCN-

MS method on the Flavia [44] data set. As can be seen, the proposed method achieved

a high recognition accuracy on most categories, covering not only smooth and regu-

lar leaf shapes but also noisy and uneven leaf shapes. (Note that the number of images

contained in different categories varies). In total, only seven test samples were misclas-

sified. It is demonstrated that our method achieved strong robustness across different

leaf categories.

5.4. Animal

The BASR-GCN was also tested on the Animal [42] data set together with 15 base-

lines. As reported in Table 5, the proposed BASR-GCN-MS outperformed all its coun-

terparts. Figure 11 displays eight misclassified shape images and eight shape images

of the corresponding categories classified. Significant intra-class variation can be ob-

served, due to the different postures of the same animal species. This variation, coupled
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Table 4: Comparison of the accuracy values obtained

using the proposed BASR-GCN along with different

scales and 15 baselines on the Flavia [44] data set.

Method Accuracy (%)
MLBP [53] 97.55

RM-LBP [54] 97.94

OM-LBP [54] 97.89

RIWD [55] 97.50

Deep-Plant [51] 98.22

HGO-CNN [50] 97.53

VGG16 [56] 95.00

VGG16 (Pre-trained)-RF 95.53*

VGG19 [56] 96.25

FFNET [25] 98.34*

EfficientViT-m4 [24] 98.54*

ViG [38] 98.75*

MTD+1-NN [50] 92.66

MTD + LBP-HF [50] 99.16

SSV [57] 98.78

BASR-GCN-Small (Ours) 98.86

BASR-GCN-Middle (Ours) 99.06

BASR-GCN-Large (Ours) 98.02

BASR-GCN-MS (Ours) 99.27
* The results of FFNET, EfficientViT, ViG and

VGG16 (Pre-trained)-RF were obtained by running

the original source code on the Flavia [44] data set.

with the resemblance between different species shown in some specific postures, lead

to the outcome that the Animal [42] data set is challenging.

Figure 12 presents the confusion matrix produced using our BASR-GCN-MSmethod

on the Animal [42] data set. It can be seen that our method was able to derive a high

recognition accuracy for relatively small and irregular shape categories, such as Bird

and Rat. In particular, confusion occurred when the boundaries and skeleton topology

structures between two categories showed a high similarity, such as Cat and Dog.

5.5. Other Performance Metrics

To augment the evaluation of the proposed method, we further calculated the pre-

cision, recall and F1-score values obtained using our method across the four data sets.

These metrics aim to measure the classification performance of the model from differ-

ent perspectives. The results in terms of those metrics are presented in Table 6. It can

be seen that our method produced high values with regard to the three metrics.
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Figure 9: Examples of the shape images misclassified by our BASR-GCN-MS on the Flavia [44] data set.

The first row shows seven shape images which belong to different categories, including Sweet Osmanthus,

Wintersweet, Chinese Cinnamon, Wintersweet, Chinese Cinnamon, Ford Woodlotus, Chinese Cinnamon, re-

spectively, while the second row displays seven shape images of the corresponding misclassified categories

which comprises Chinese Cinnamon, Crape Myrtle, Southern Magnolia, Japanese Cheesewood, Crape myr-

tle, Oleander, Nanmu, respectively.

6. Ablation Study

To examine the effectiveness of different components of the proposed network, we

conducted a series of ablation experiments. For simplicity, only the proposed BASR-

GCN-MS and the Swedish Leaf [43] data set were used in the ablation study. In this

section, we report the results derived in the ablation study.

6.1. Effect of the Number of Neighboring Nodes

Given a node, each GCN layer in the dynamic GCN block selects K neighboring

nodes. As a result, the adjacency matrix is reconstructed. Thus, the value of K affects

the feature exchange between neighboring nodes and the connections established be-

tween different parts of the boundary. If the number of neighboring nodes is too small,

insufficient neighbors might be used for feature exchange, which impairs the accuracy

of shape representation. On the contrary, a large number of nodes may result in the

redundant information and a lack of distinctive features between nodes, which lead to

the over-smoothing issue. We tested four different K values. The results obtained us-

ing the proposed BASR-GCN-MS are reported in Table 7. As can be seen, the best

performance was obtained when the value of K was set to 6.

6.2. Effect of the Scale of Key Points

In this study, we discretized the boundary into a predefined number of key points,

which have a fixed interval. Hence, the number of key points reflects the scale at which

shape representation is learned. To evaluate the effect of different scales on the pro-

posed BASR-GCN, we conducted an experiment using three scales: small, middle and

large, at which 1,200, 700 and 300 key points are sampled, respectively. In addition,

we tested four different combinations of scales. The results derived using seven scale

schemes are shown in Table 8. It can be observed that the combination of the large

and middle scales or the combination of the large, middle and small scales produced
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Figure 10: The confusion matrix produced by our BASR-GCN-MS method on the Flavia [44] data set. The

rows represent the actual categories and the columns denote the categories that our method classified.

the best result. However, the utilization of only the small or middle scale also gener-

ated the comparable result. It should be noted that the combination of the three scales

consistently outperformed the combinations of two scales or a single scale on the other

data sets.

In addition, the performance gain obtained using multi-scale feature schemes was

relatively small on the Swedish Leaf [43] data set. We attribute this observation to

the high inter-class separability and low intra-class variance inherent in the data set.

Many leaf categories exhibit distinctive global shapes with minimal deformation or

topological complexity. As a result, the performance of our BASR-GCN reached the

saturation point and there was not much room for improvement. In this situation, the

use of multiple scales only brought a marginal benefit because most of the discrimina-

tive information had already been captured at a single scale.

6.3. Effect of Different Graph Convolutions

To examine the effect of different graph convolutions on the performance of the

proposed method, we compared three different graph convolutions. The results are
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Table 5: Comparison of the accuracy values obtained

using the proposed BASR-GCN along with different

scales and 15 baselines on the Animal [42] data set.

Method Accuracy (%)
Class Segment Set [46] 69.70

ICS [42] 78.40

IDSC [58] 73.60

Contour Segments [42] 71.70

Bag of SIFT [59] 74.90

Skeleton Paths [42] 67.90

FFNET [25] 79.40*

EfficientViT-m4 [24] 77.40*

ViG [38] 80.30*

BOCF [16] 83.40

BoCF-LP [60] 86.30

ConBOW [61] 86.00

EIFR-LR [2] 82.69 ± 0.58

BoShUDL [48] 89.01

BoSCP-LP [60] 89.70

BASR-GCN-Small (Ours) 90.40

BASR-GCN-Middle (Ours) 90.90

BASR-GCN-Large (Ours) 87.90

BASR-GCN-MS (Ours) 91.90
* The results of FFNET, EfficientViT and ViG were

obtained by running the original source code on the

Animal [42] data set.

displayed in Table 9. It can be seen that the EdgeConv [30] outperformed its two

counterparts. This result should be due to the fact that the EdgeConv recomputes the

difference between the features of two nodes and updates the neighboring nodes of each

node, which enables it capture the features at different scales and owns permutation

invariance. Therefore, the EdgeConv is particularly useful for the irregular point data.

6.4. Effect of the Features of Key Points

To represent a key point sampled from the boundary of an object, three types of

features are extracted. The first type of features contain the x and y coordinates of a

key point. The second type of feature is the angle between a key point and its preceding

key point. The third type of features consist of the x and y coordinates of the nearest

skeleton point to a key point. The three types of features are referred to as Boundary

(Location), Boundary (Angle) and Skeleton (Location), respectively. The results pro-

duced by the proposed BASR-GCN-MS with different types of features of key points

are reported in Table 10. As can be seen, the best result was achieved using the three

types of features together. In particular, the angle feature boosted the performance of

the BASR-GCN-MS better, compared to the skeleton features.
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Figure 11: Examples of the shape images misclassified by our BASR-GCN-MS on the Animal [42] data

set. The first row shows eight shape images which belong to different categories, including Cow, Monkey,

Cat, Cat, Cat, Horse, Dog and Horse. respectively, while the second row displays eight shape images of the

corresponding misclassified categories which comprises Deer, Tortoise, Leopard, Dog, Dog, Dog, Cat and

Dog.

Table 6: The Precision, Recall and F1-Score values derived using our BASR-GCN-MS method on four data

sets.

Data Set Precision Recall F1-Score (%)

MPEG-7 [41] 99.2424 99.1429 99.1385

Swedish Leaf [43] 100.0000 100.0000 100.0000

Flavia [44] 99.2899 99.2723 99.2651

Animals [42] 92.0595 91.9000 91.8649

7. Conclusion

In this study, we proposed a Boundary-Aware Shape Recognition Graph Convo-

lutional Network (BASR-GCN), which exploits the boundary cue explicitly. To be

specific, we first extracted the maximum boundary of an object. To reduce the com-

putational load, the boundary was then discretized into a set of equidistant key points,

which still retained the shape information according to the contour integration mech-

anism that the Human Vision System (HVS) utilized. Regarding each key point, a

five-dimensional feature vector was calculated in order to represent its location, angle

and skeleton characteristics. Furthermore, a set of graphs were built on top of the key

points using these features. The BASR-GCN was used to learn the spatial layout of

the key points. Since the BASR-GCN dynamically generated new adjacency matrices

during the convolution operation, it was able to establish the semantic connection be-

tween different parts of the boundary. We also introduced a multi-scale BASR-GCN

(BASR-GCN-MS) for the purpose of exploiting the shape features extracted at different

scales. To the authors’ knowledge, GCNs have not been explored in the previous 2D

shape recognition studies. The proposed network was tested together with four pub-

licly available shape data sets. The results demonstrated that our network performed

better than the baselines. We believe that these promising results should be due to the

fact that the BASR-GCN captures the global spatial layout of the boundary and the

semantic information learned by a series of dynamic GCN blocks.
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Figure 12: The confusion matrix produced by our BASR-GCN-MS method on the Animal [42] data set. The

rows represent the actual categories and the columns denote the categories that our method classified.

Although promising results have been derived using our method, it still has at least

three limitations. First, its performance is highly dependent on the quality of boundary

extraction. Noisy or incomplete contours may lead to inferior recognition accuracy.

Second, it employs a fixed keypoint sampling strategy, which may not be optimal for

shapes of varying complexities. Third, it has not been evaluated under occlusion sce-

narios and its robustness to occlusion remains unknown.
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