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Abstract—Natural terrain scene images play important roles
in the geographical research and application. However, it is
challenging to collect a large set of terrain scene images. Recently,
great progress has been made in image generation. Although
impressive results can be achieved, the efficiency of the state-
of-the-art methods, e.g., the Vector Quantized Generative Ad-
versarial Network (VQGAN), is still dissatisfying. The VQGAN
confronts two issues, i.e., high space complexity and heavy
computational demand. To efficiently fulfill the terrain scene
generation task, we first collect a Natural Terrain Scene Data
Set (NTSD), which contains 36,672 images divided into 38 classes.
Then we propose a Lightweight VQGAN (Lit-VQGAN), which
uses the fewer parameters and has the lower computational
complexity, compared with the VQGAN. A lightweight super-
resolution network is further adopted, to speedily derive a high-
resolution image from the image that the Lit-VQGAN generates.
The Lit-VQGAN can be trained and tested on the NTSD. To
our knowledge, either the NTSD or the Lit-VQGAN has not
been exploited before1. Experimental results show that the Lit-
VQGAN is more efficient and effective than the VQGAN for the
image generation task. These promising results should be due to
the lightweight yet effective networks that we design.

Index Terms—Terrain scenes, natural terrains, image genera-
tion, super-resolution, lightweight networks.

I. INTRODUCTION

NAtural terrain scene images are key to the geographical

research and application, for example, terrain scene

recognition and understanding. However, it is hard to collect

a large number of terrain scene images, in particular, covering

diverse categories. In recent years, great progress has been

made in the field of Artificial Intelligence Generated Content

(AIGC) [1, 2, 3], such as dialog generation, image generation

and cross-modal generation. In general, image generation

has been studied on top of Generative Adversarial Networks

(GANs) [4, 5], Variational Autoencoders (VAEs) [6, 7, 8] and

Autoregressive (AR) models [9, 10].

The GAN [4] normally contains a generator network and a

discriminator network. The generator is used to produce fake

images while the discriminator attempts to distinguish the real

images from the fake images. Each network trains the other
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Fig. 1. Comparison of the time used for generating terrain images of different
sizes using the VQGAN [11] and our method. As can be seen, our method
performs image generation more efficiently than the VQGAN. In particular,
this is the case when the image is larger than 256×256 pixels. Given that
256×256 terrain images are generated using our method and the VQGAN,
the FID scores computed between the images generated and those in the
testing set are 24.36 and 30.83 respectively. It is suggested that our method
generates images with the higher quality than those produced by the VQGAN.

by continuously improving their performance. In contrast, the

VAE encodes the input image into a vector in the latent space

and decodes this vector to a novel image. Unlike the GAN,

the VAE is trained by minimizing the reconstruction error and

the regularization term in the latent space. Besides, the AR

model generates images in a pixel-by-pixel manner. Thus, this

method is usually slower than the other methods. But the AR

model can generate high quality and high-resolution images.

Recently, Esser et al. [11] proposed a Vector Quantized

Generative Adversarial Network (VQGAN) by exploring the

long-range dependencies modeled by Transformers in the

discrete space in order to improve the AR model. The training

process of the VQGAN can be divided into two stages. First,

the VQGAN uses an encoder to map the input image to a set

of vectors in the latent space. The latent vectors are decoded to

a new image using the decoder. These images are used to train

a vector quantizer. The quantizer maps the latent vectors to a

set of discrete vectors, which are comprised of a codebook.

Second, the AR model samples a set of latent vectors from

a uniform distribution. Each vector is mapped to the closest

code vector in the codebook. The code vectors are fed into

the decoder. As a result, an image is generated by decoding.

Although the VQGAN can generate diverse high-resolution

images, it still encounters two issues, i.e., high space com-

plexity and heavy computational demand. To generate high-

resolution images, in particular, the sampling and decoding
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operation has to be performed in a moving-window manner.

In other words, this operation needs to be conducted in each

window. Due to the computational complexity of the sampling

process, the speed of high-resolution image generation is slow.

Since it is challenging to obtain a large set of natural

terrain scene images, we aim to overcome this challenge by

exploiting image generation techniques. To efficiently perform

the natural terrain scene generation task, we first collect a

Natural Terrain Scene Data Set (NTSD) which covers diverse

terrain categories. In total, 36,672 images which are divided

into 38 terrain classes are comprised of this data set. The data

set can be used to train an image generation network.

Then we introduce a Lightweight Vector Quantized Gen-

erative Adversarial Network (Lit-VQGAN), to address the

two issues. Specifically, two lightweight blocks are designed,

including a Local Feature Extraction Block (LFEB) and an

Efficient Feature Fusion Block (EFFB). The LFEB is used

to extract local features while the EFFB can capture both

the local and global information. The Lit-VQGAN is built

on top of the two blocks. Thus, it utilizes fewer parameters,

compared with the VQGAN. Also, we adopt a lightweight

super-resolution network using the Complex Attention Block

(CAB) that we design. This network is used to derive a high-

resolution image from the image generated by the decoder. In

contrast to the moving-window sampling and decoding scheme

that the VQGAN uses, our solution is able to perform the high-

resolution image generation task more efficiently (see Fig. 1).

To our knowledge, either the NTSD or the Lit-VQGAN has

not been explored before. The contributions of this study are

summarized as threefold.

• We collect a new Natural Terrain Scene Data Set (NTSD).

This data set can be used to train an image generation

network in order to derive more terrain images for the

geographical research and application.

• We propose a lightweight VQGAN [11] which is built

using two lightweight blocks that we deliberately design,

including the Local Feature Extraction Block (LFEB) and

the Efficient Feature Fusion Block (EFFB). As a result,

both the training and the inference of this network are

more efficient, compared with the VQGAN [11].

• To overcome the speed bottleneck of high-resolution

image generation, we adopt a lightweight super-resolution

network. The sampling and decoding operation is only

conducted once instead of being performed in a moving-

window style [11]. Hence, the speed of high-resolution

image generation is greatly accelerated.

The rest of this paper is organized as follows. The related

work is reviewed in Section II. We introduce our Natural

Terrain Scene Data Set (NTSD) in Section III. The proposed

Lit-VQGAN is proposed in Section IV. In Sections V and VI,

experimental setup and results are reported respectively. We

draw our conclusions in Section VII.

II. RELATED WORK

A. Image Synthesis

Deep generative models have achieved many successes in

different image synthesis tasks. Although high-fidelity images

can be generated using GAN-based methods, likelihood-based

methods, such as Variational Autoencoders (VAEs) [6, 7, 8,

12], diffusion models [13, 14, 15] and AR models [9, 10],

usually provide more diverse images.

To generate high-quality, realistic images, a diffusion model

normally combines the diffusion process with a generative

model. Rombach et al. [16] proposed a diffusion model

based on the latent representation space, which reduced the

computational complexity and increased the training speed.

In [17], the DiT method was developed by applying the

transformer architecture to a diffusion model. For the purpose

of enhancing the quality of the images generated and the

stability of the training process, Nichol and Dhariwal [18]

utilized an improved Variational Lower Bound (VLB) as the

training objective.

The generation process of the VQVAE [7] contains two

stages. First, images are quantized into the latent space. Sec-

ond, sampling and decoding are conducted in this space. Many

studies [11, 13, 19] were inspired by the two-stage approach.

The Masked Generative Image Transformer (MaskGIT) [19]

method was also built based on the two-stage approach. Par-

ticularly, this method was focused on improving the efficiency

of the second stage in which an AR model was used by in-

troducing a bidirectional Transformer. To accelerate the image

generation task, the VQ-Diffusion [13] approach brought the

two-stage method and the diffusion model together.

In contrast, we utilize the lightweight encoder-decoder net-

work and a lightweight super-resolution network to address

the two issues that the VQGAN [11] encountered.

B. Efficient Neural Networks

Convolutional neural networks (CNNs) have dominated

various computer vision tasks until now. Due to the increasing

demand for application of neural networks to mobile and

robotic systems, efficient network design has been given

much attention. Howard et al. [20] built the MobileNetV1

by proposing the Depthwise Separable Convolution, which

greatly reduced the number of parameters and the computa-

tional cost. Specifically, the standard convolution was decom-

posed into a Depthwise Convolution and a Pointwise Convo-

lution. To enhance the representation ability of the network,

Howard et al. [21] further developed the MobileNetV2 using

inverted residual blocks and linear bottlenecks. In [22], the

MobileNetV3 was introduced on top of the Adaptive Width

and Automated Neural Architecture Search techniques in order

to improve the accuracy and efficiency of the network.

The MobileNeXt [23] was designed based on the Sandglass

block, which improved the Inverted Residuals block used in

the MobileNetV2 [21]. In [24], a lightweight convolutional

neural network, namely, ShuffleNet, was proposed on top of

the channel shuffling operation, which effectively decreased

both the model size and the computational complexity. Tan

and Le [25] adopted the EfficientNet by balancing the scaling

in the network depth, width and resolution.

On the other hand, Transformers have been attracting more

and more attention because they can model long-range depen-

dencies. However, the computational cost is prohibitive for
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mobile and robotic applications. To save the computational

cost, Li et al. [26] built the SepViT by designing a deep separa-

ble self-attention module. In [27], a Light Vision Transformer,

i.e., Light ViT, was developed. A global information token was

added to the self-attention unit, which was embedded into the

local information for interaction. Wang et al. [28] further re-

duced the computational cost by replacing the standard Multi-

head Attention (MHA) with the Spatial-Reduction Attention

(SRA). The key point of the SRA is to reduce the number of

key-value pairs used in the attention layer.

It has been shown that a hybrid architecture which combines

the convolution and Transformer is able to capture both local

and global features better than a CNN or Transformer network.

Li et al. [29] developed the Next Convolution Block and the

Next Transformer Block in order to encode the local and global

information respectively. In [30], the bidirectional fusion of

local and global features was used to build the Mobile-Former

by exploiting the advantage of the MobileNet [20] in the local

attention and the merit of the Transformer in the global in-

teraction. To eliminate inefficient frequent reshape operations,

Li et al. [31] designed a dimensionally consistent network,

namely, Efficient-Former, using the 4D feature implementation

and 3D Multi-head Self-Attention (MHSA).

Inspired by these studies, we design a Lightweight VQ-

GAN (Lit-VQGAN), which efficiently exploits both the local

and global features through the lightweight blocks that we

adopt. This network involves fewer parameters and the lower

computational complexity, compared with the VQGAN [11].

C. Efficient Super-Resolution Networks

To improve the efficiency of models, lightweight and effi-

cient super-resolution networks become popular. The compu-

tational burden was reduced using post-upsampling [32]. Hui

et al. [33] developed a lightweight multi-distillation network

for the sake of performing fast and accurate image super-

resolution. In [34], the performance was improved by using

multiple attention mechanisms to refine and extract features.

Sun et al. [35] adopted the ShuffleMixer by introducing the

channel split and channel shuffle operations, which can be

used to effectively perform feature fusion.

Recently, large kernel convolutions have received much

attention. As an early convolutional neural network (CNN)

based on large kernels, AlexNet [36] involved a large number

of parameters and encountered the high computational cost.

In [37], the 7×7 depthwise convolution was used for the

ConvNeXt. As a result, this network outperformed the corre-

sponding ViT network. The better results were derived using

the RepLKNet [38] which enlarged the size of the convolution

kernel to 31×31. Guo et al. [39] demonstrated that large

convolution kernels can be effectively decomposed into a set

of convolutions, including the depthwise convolution, dilated

convolution and pointwise convolution, by experimentation.

To efficiently perform high-resolution image generation, we

propose a lightweight super-resolution network. This network

uses both the effective decomposition of large convolutional

kernels and channel shuffling to fuse both the local and global

features. Our network can be used to generate a high-resolution

image after only applying the sampling and decoding operation

once. In contrast, the VQGAN [11] uses a moving-window

sampling and decoding scheme in which the sampling and

decoding operation has to be applied to each window.

III. NATURAL TERRAIN SCENE DATA SET

Although many terrain data sets have been collected, they

normally contain remote sensing images, e.g., aerial or satellite

images. In this study, we particularly pay attention to natural

terrain scene images, which can be used for the geographical

research and application. To this purpose, we collected a

Natural Terrain Scene Data Set (NTSD). This data set covers

diverse geographic scenes and presents various landforms.

Compared with the existing scene data sets [40, 41], the NTSD

is specifically focused on natural terrain categories.

A. Data Collection and Copyright

We collected images from Unsplash [42], Pixabay [43],

Pexels [44], Flickr [45] and Google Search [46]. The images

downloaded from Unsplash can be used freely. All images

provided by Unsplash can be used for both the commercial

and non-commercial purposes. The images downloaded from

Pixabay and Pexels are subject to the Creative Commons

Zero license. This license allows the copying, modification,

distribution and commercial use of the work. When we down-

loaded images from Flickr and Google Search, we followed

the licensing guidelines for each image.

B. Statistics of the Data Set

In total, we collected 36,672 terrain scene images, which

were divided into 38 classes. In terms of each class, an

example image is shown in Fig. 2. As can be seen, not

only both terrestrial and marine terrains, including mountains,

farmland, terraces, beaches, islands, reefs, sandbars, etc., but

also unique landforms, such as Adarce, Danxia and Yardang,

are covered. To demonstrate the statistics of the images in-

cluded in the 38 classes, we present the number of the images

contained in each class in Fig. 3. It can be observed that the

distribution of different classes is relatively uniform except

that the Mangrove class comprises a relatively large number

of images. In average, each class consists of 965 images. This

number suggests a large intra-class variation.

IV. THE LIGHTWEIGHT VECTOR QUANTIZED

GENERATIVE ADVERSARIAL NETWORK

Considering the existing image generation networks usually

encounter the challenges of high space complexity and heavy

computational demand, we introduce a Lightweight Vector

Quantized Generative Adversarial Network (Lit-VQGAN).

The architecture of this network is shown in Fig. 4. Specif-

ically, the Lit-VQGAN comprises a VQGAN [11] network

which is built on top of a series of lightweight blocks and

a lightweight super-resolution network. Compared with the

original VQGAN, our network uses fewer parameters and

performs the image generation task more efficiently.
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Adarce Beach Canyon Cavern Coast Coniferous Forest Danxia

Desert Earth Forest Farmland Flowerland Glacier Islands Lake

Loess Plateau Mangrove Meander Mountain Oasis Peak Forest Plain Pier

Prairie Rainforest Reef River Saline Soil Sandbar Sand Dunes

Sands Sea Snow Mountain Snowfield Stone Forest Terrace Volcano

Waterfall Wetland Yardang

Fig. 2. An example is shown in terms of each of the 38 classes contained in the Natural Terrain Scene Data Set (NTSD).

A. Overview

The Lit-VQGAN consists of a lightweight encoder-decoder

with a Vector Quantization (VQ) module, a discriminator and

a lightweight super-resolution network. The encoder contains a

series of lightweight Local Feature Extraction Blocks (LFEBs)

and Efficient Feature Fusion Blocks (EFFBs). The decoder

has a symmetrical structure to the encoder. Both the VQ

module and the discriminator maintain the same structure as

that the VQGAN [11] utilizes. On top of the architecture of the

ShuffleMixer [35], the lightweight super-resolution network

is built using a set of Complex Attention Blocks (CABs).

The computational complexity of the proposed Lit-VQGAN is

lower than that of the original VQGAN due to the applications

of the lightweight blocks and the large kernel convolution

decomposition technique.

The training process of the Lit-VQGAN is described as

follows. Given that an image is fed into the encoder, the

feature maps produced are sent to the VQ module. As a result,

they are mapped into a discrete feature space. The quantized

feature maps are then fed into the decoder. The result is a

reconstructed image in terms of the input image. This image

is determined by the discriminator. The loss function that the

VQGAN [11] employs is used here.

The image generation process is different from that used

by the VQGAN [11]. Instead of performing the sampling

and decoding operation in a moving-window style [11], we

only conduct this operation once and then use the super-

resolution network which is pre-trained in advance to derive

a high-resolution image. Specifically, the sampling procedure

is conducted using an AR model in the discrete feature space.

The result is fed into the decoder and a 256×256 image

is generated. The image generated is sent to the pre-trained

super-resolution network to derive a high-resolution image.

B. Local Feature Extraction Blocks (LFEBs)

Considering that the resolution of the feature maps extracted

at the shallow part of the encoder is relatively high, global

characteristics may greatly increase both the number of pa-

rameters and the computational complexity. To balance the

efficiency and effectiveness, we introduce a Local Feature Ex-

traction Block (LFEB) which is a lightweight unit in essence.

The LFEB consists of a Sandglass Block (SG Block) [23] and

a Multilayer Perceptron (MLP) layer, each of which utilizes

a residual connection. The SG Block contains two depthwise

convolutions in order to encode the spatial information. For

the purpose of capturing the relationship between different

channels, the MLP layer is appended to the SG Block. The

LFEB can be formulated as follows:

x̃l = SG(x̃l−1) + x̃l−1, (1)

xl = MLP(x̃l) + x̃l, (2)

where x̃l−1 denotes the feature maps generated by the (l-1)-th
block, and x̃l and xl are the feature maps produced by the SG

Block and the MLP respectively. Compared with the popular

lightweight blocks, such as the inverted residual structure of
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Fig. 3. The number of the images contained in each of the 38 classes of the Natural Terrain Scene Data Set (NTSD).
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Fig. 4. The architecture of the proposed Lit-VQGAN, which consists of a lightweight VQGAN [11] built on top of two types of lightweight blocks, including
the LFEB and the EFFB, and a lightweight super-resolution network, which is adopted using a set of Complex Attention Blocks (CABs).

MobileNetV2 [21] and the Fire Module of SqueezeNet [47],

the LFEB is able to capture the more complex image charac-

teristics. This is particularly important to image reconstruction.

C. Efficient Feature Fusion Blocks (EFFBs)

The core of the encoder-decoder network in the VQGAN

[11] comprises a series of convolutional layers, which lack

the representation of the global information. However, this

information is useful for improving the quality of the images

generated by the VQGAN [11]. To exploit both the global

information and local characteristics, we introduce a Efficient

Feature Fusion Block (EFFB). The left branch of the EFFB

comprises an SG Block, which captures local characteristics.

For the sake of capturing the global information, the right

branch of the EFFB is adopted on top of a large kernel

convolution and a 1×1 convolution, which is an attention unit

in essence. Compared with the self-attention mechanism that

Transforms utilize, both the computational complexity and the

number of parameters of this branch are less.

Therefore, the utilization of the large kernel convolution not

only enhances the computational efficiency but also captures

the global information. Due to the trade-off between the effi-

ciency and effectiveness, we use 13×13 convolutional kernels.

The local and global features are fused using a concatenation
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operation. An MLP layer is further applied to the features

fused for the purpose of modeling the relationship betwee

different channels. The EFFB can be formulated as follows:

Attention(x̃l−1) = DConvk×k(x̃
l−1)× Conv1×1(x̃

l−1), (3)

x̃l = Concat((SG(x̃l−1) + x̃l−1),Attention(x̃l−1)), (4)

xl = MLP(x̃l) + x̃l, (5)

where x̃l−1 denotes the feature maps produced by the (l-1)-th
block, k is the size of the kernel, Attention(·) represents the

right branch of the EFFB, SG(·) stands for the left branch of

the EFFB and xl is the feature maps generated by the MLP.

D. The Lightweight Super-Resolution Network

Regarding the image generation process, the VQGAN [11]

first uses an AR model to perform the sampling operation

in the discrete feature space mapped by the VQ module

and then feeds the mapped feature maps to the decoder in

order to generate an image. However, AR models normally

encounter two problems. First, the sampling operation at each

pixel location relies on the codes sampled at the prior pixel

locations, which may lead to an accumulated error. This error

will impair the generation process. Second, the AR-based

sampling is conducted at each pixel location, which is time-

consuming. Since the generation of a high-resolution image is

performed in a moving-window style, in which the sampling

and decoding operation is conducted in each window, this

process is time-consuming and requires the large memory.

To address the above issues, we aim to perform the image

generation operation using a sampling, decoding and super-

resolution scheme instead of the moving-window sampling and

decoding scheme. To this end, we first adopt a lightweight

block and then build a super-resolution network on top of

these blocks by referring to the ShuffleMixer [35]. In this

case, a 256×256 image is first generated using the AR-based

sampling and decoding operation. Then, the super-resolution

network is used to upscale the image to the higher resolution.

As a result, the high-resolution image generation can be

conducted in the faster and more parameter-efficient manner.

As shown in Fig. 4, the image generated by the Lit-VQGAN

is first fed into a 3×3 convolutional layer in order to extract the

shallow-level features. Then these features are passed through

a series of Complex Attention Blocks (CABs). The result is

a set of deep-level feature maps. These maps are sent to an

Upsampler and a 3×3 convolutional layer. The resultant image

is added with the upsampled image of the generated image.

As a result, the high-resolution image is derived.

The original ShuffleMixer [35] network lacks exploration

of global features. However, both the local features and long-

range dependencies are useful for the super-resolution task.

Therefore, the CAB is adopted using two branches, which

are used to extract the two types of information respectively.

The left branch of the CAB contains a ShuffleMixer [35]

layer which comprises a channel shuffling, a 7×7 depthwise

convolution and a channel shuffling. This branch enables the

extraction of informative features across different channels and

the relatively large spatial area.

On the other hand, the decomposed large kernel convolution

is utilized in the right branch, to capture long-range dependen-

cies. Specifically, a 17×17 convolutional kernel is decomposed

into a 1×1 pointwise convolution, a 5×5 depthwise convolu-

tion and a 5×5 depthwise dilation convolution with the dilation

rate of 3. Compared with the large convolutional kernel, this

decomposition greatly reduces both the number of parameters

and the computational complexity. An attention style operation

is carried out by performing an element-wise multiplication

between the feature maps produced by a single 5×5 depthwise

convolution and those generated using the decomposed large

kernel convolution. The two sets of feature maps produced by

the left and right branches are fused using a second attention

computation. The fused feature maps are passed through a

3×3 convolution and a 1×1 convolution.

The CAB can be formulated as follows:

x̃l
L = Shuffle(DConv7×7(Shuffle(x̃l−1))), (6)

x̃l
K = DConv5×5,d=3(DConv5×5(Conv1×1(x̃

l−1))), (7)

x̃l
R = DConv5×5(x̃

l−1)× x̃l
K , (8)

xl = Conv1×1(Conv3×3(x̃
l
L × x̃l

R)), (9)

where x̃l−1 denotes the feature maps produced by the (l-1)-th
block, x̃l

L denotes the output of the left branch, x̃l
K stands

for the output of the large kernel convolution decomposition

module, x̃l
R denotes the output of the right branch and xl is

the output of the CAB. In essence, the CAB is a lightweight

block which extracts not only local features but also long-range

dependencies.

In contrast to other attention modules, the CAB con-

tains a unique dual-branch structure and a different attention

mechanism. Specifically, one branch uses channel mixing

operations to focus on the inter-channel information, while

the other branch captures long-range dependencies through

the decomposed large-kernel convolutions. However, existing

attention modules, such as the SE module [48] and CBAM

[49], typically generate attention maps using the single-branch

global pooling or convolution operations. In addition, the CAB

exploits a novel attention mechanism which performs the

element-wise multiplication between the features produced by

a depthwise convolution and those generated by the decom-

posed large-kernel convolution. This design enables the CAB

to effectively integrate both the local and global information.

As a result, the feature representation ability of the CAB is

enhanced while the low computational complexity is obtained.

V. EXPERIMENTAL SETUP

We will introduce the experimental setup in this section,

including the baselines, data sets, evaluation metrics and

implementation details.

A. Baselines

Regarding both the image reconstruction and generation

tasks, we compared the proposed method with state-of-the-

art approaches, including VQVAE-2 [8] and VQGAN [11].
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Three additional lightweight VQGAN networks built us-

ing the blocks that MobileNetV2 [21], MobileNetV3 [22]

and Next-ViT [29] utilized were compared with the pro-

posed LiT-VQGAN for image reconstruction task. For the

super-resolution task, our lightweight super-resolution network

was compared against 14 state-of-the-art lightweight super-

resolution networks, including SRCNN [50], FSRCNN [32],

VDSR [51], LapSRN [52], DRCN [53], CARN [54], EDSR-

baseline [55], FALSR-A [56], IMDN [33], LAPAR [57],

ECBSR [58], SMSR [59], LBNet [60] and ShuffleMixer [35].

B. Data Sets

During the training processes of image reconstruction and

image generation, our Natural Terrain Scene Data Set (NTSD)

was utilized. We did not discriminate the class of images

during the training process. Given a class, 2/3 of the images

were randomly selected, which were used as the training

images, while the remaining images were utilized as the

testing images. As a result, the training set and the testing

set contained 24,437 and 12,235 images respectively. The

same data pre-processing was used as that utilized in [11].

We resized the training images to the resolution of 256×256

pixels. For the semantic image synthesis task, a semantic

segmentation mask was obtained from each image using the

DeepLabV2 [61] trained on the COCO-Stuff [62] data set.

In the super-resolution stage, we trained our network using

the DF2K data set, which comprised the DIV2K [63] and

Flickr2K [55] data sets. In total, 3,450 high-quality images

were included. To derive low-resolution (LR) images, we

followed the standard protocol in which high-resolution (HR)

reference images were downsampled using bicubic interpo-

lation. The model that we trained was assessed using five

publicly available benchmark data sets, including Set5 [64],

Set14 [65], B100 [66], Urban100 [67] and Manga109 [68].

C. Evaluation Metrics

Regarding the image reconstruction task, we computed the

average reconstruction loss (Rec.) and the average perceptual

loss (Perc.) across the testing set, to evaluate the performance

of image reconstruction. For the image generation task, we

used the Frechet Inception Distance (FID) to measure the

quality of the image generated. For the purpose of assessing

the performance of the super-resolution network, both the

Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity

Index (SSIM) measures were employed. These measures were

calculated using the Y channel in the YCbCr color space.

D. Implementation Details

The codebook in the VQ module contained 1,024 tokens. Ei-

ther the encoder or the decoder of the Lit-VQGAN comprised

10 blocks. The network was trained using the Adam optimizer

where β1 and β2 were set to 0.5 and 0.9 respectively. We set

the initial learning rate to 4.5e-6. The mini-batch size was set

to 4. The Lit-VQGAN was trained for 200 epochs using two

GeForce RTX 3090 GPUs.

We trained the super-resolution network using the RGB

channels. Given a mini-batch, we randomly cropped 32 64×64

TABLE I
COMPARISON OF THE NUMBER OF PARAMETERS, FLOPS, AND THE FID,

KID AND IS VALUES OBTAINED USING OUR NETWORK AND FIVE

STATE-OF-THE-ART NETWORKS FOR THE UNCONDITIONAL IMAGE

GENERATION TASK. HERE, ↓ INDICATES THAT THE LOWER VALUE

CORRESPONDS TO THE HIGHER IMAGE QUALITY WHILE ↑ INDICATES THAT

THE HIGHER VALUE CORRESPONDS TO THE HIGHER IMAGE QUALITY. IN

TERMS OF EACH METRIC, THE BOLD FONT INDICATES THE BEST RESULT.

Network Params. (M) FLOPs (G) FID ↓ KID ↓ IS ↑

VQVAE-2 [8] 196.61 488.57 54.33 0.0298 3.13

BigGAN [69] 149.43 342.53 34.06 0.0140 3.93

VQGAN [11] 466.69 1320.51 30.83 0.0141 7.21

LDM [16] 353.40 1005.05 18.50 0.0065 5.03

Improved-Diffusion [18] 424.05 965.41 28.45 0.0090 6.09

Ours 374.13 804.55 24.36 0.0096 7.21

patches from all the LR images. These patches were aug-

mented by applying the random horizontal flip and rotation

operations. The patches were used as the input of the network.

Our network was trained using the Adam optimizer for a

total of 1×106 iterations. During the training process, we

minimized both the L1 loss and the frequency loss. The learn-

ing rate was set to 5×10−4 constantly. The super-resolution

experiment was conducted on a GeForce RTX 3090 GPU.

VI. EXPERIMENTAL RESULTS

The experiment was conducted using the setup introduced

in Section V along with the NTSD. We report the experimental

results in this section.

A. Unconditional Natural Terrain Scene Generation

In this subsection, we report the results obtained using the

proposed method for unconditional natural terrain scene gen-

eration. Both the quality and speed of the task are evaluated.

1) Quality: Given that the training settings of the VQGAN

[11] was used, the unconditional image generation task was

conducted to derive 256×256 images. As shown in Table

I, our network used fewer parameters while achieving the

better image generation quality, compared with the VQGAN

[11]. In addition, we compared our method with VQ-VAE-2

[8], BigGAN [69] and two state-of-the-art diffusion models

[16, 18]. The results are also reported in Table I. It can be

seen that our approach achieves a proper trade-off between

the accuracy and the complexity. We further show six sets

of images generated using five state-of-the-art approaches and

our method in Fig. 5. In contrast to the images produced by

the baselines, the images generated using our method manifest

the better, or at least the comparable, image quality.

2) Speed: Given that the NTSD were used for training both

our method and the VQGAN [11] using the same settings,

the time required in average is around 39 minutes and 49

minutes per epoch, respectively. In other words, our method

could speed up the training process by about 20 percent. We

also compared the time required for generating terrain scene

images of different sizes using the VQGAN [11] and our

method. As shown in Fig. 1, our method conducted image

generation faster than the VQGAN, in particular, this was the

case when the image was larger than 256×256 pixels.
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BigGAN

Improved-Diffusion

LDM

VQGAN

Ours

VQVAE-2

Fig. 5. Comparison of the images unconditionally generated using our method and five state-of-the-art approaches [8, 11, 16, 18, 69].

B. Semantic Image Synthesis

The semantic image synthesis experiment was performed in

the case that a semantic segmentation map produced by the

DeepLabV2 [61] was used as the conditional input. Intuitively,

the segmentation map provides the semantic information for

each pixel. As a result, the additional information was intro-

duced which was useful for guiding the generation process.

Fig. 6 presents eight sets of results. As can be seen, our method

was able to generate realistic terrain scene images with the

guidance of the semantic maps.

C. Super-Resolution

We compared our lightweight super-resolution network with

14 state-of-the-art baselines for the super-resolution task with

three different upscaling factors, including ×2, ×3 and ×4, on

five different benchmark data sets in Table II. In terms of the

PSNR and SSIM measures, our method performed better than,

or at least comparably to, the baselines across the five data sets.

It should be noted that our method achieved a good trade-off

between the number of parameters and the performance with a

proper computational speed. In addition, five high-resolution

terrain scene images derived by applying our super-solution

network to the images that we generated using our image

generation network are displayed in Fig. 7. As can be seen,

these images present rich details and the high-fidelity.

D. Ablation Studies

To further understand and demonstrate the effectiveness of

our Lit-VQGAN, we ablate it by evaluating the impact of each

key component for the terrain scene image reconstruction task.

1) Impact of Lightweight Blocks: Three additional VQ-

GAN [11] networks were built on top of the blocks used

by three lightweight networks, including MobileNetV2 [21],

MobileNetV3 [22] and NextViT [29], respectively. These

networks were compared with our Lit-VQGAN for the image

reconstruction task. Table III shows the number of parameters,

FLOPs, and the reconstruction loss and perceptual loss calcu-

lated between the original and reconstructed images. It can

be seen that the Lit-VQGAN was superior to its counterparts

for the image reconstruction task. Our network used the fewer

parameters and had the faster computational speed than the

VQGAN networks crafted using the MobileNetV2 [21] and

NextViT [29] blocks. These results suggest that the proposed

Lit-VQGAN owns a good trade-off between the model size

or efficiency and the effectiveness. Besides, Fig. 8 presents

three sets of images reconstructed using the four VQGAN

networks. As can be seen, the image reconstructed using our

method shows the higher similarity to the ground-truth image

according to the SSIM value, than the images reconstructed

using the other networks.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6. Eight sets of results obtained in the semantic image synthesis experiment. In each column, a semantic segmentation map derived by applying the
DeepLabV2 [61] model to an NTSD image (top) and two images generated using our method from the semantic map (middle and bottom) are shown in turn.

TABLE II
COMPARISON OF OUR LIGHTWEIGHT SUPER-RESOLUTION NETWORK AND 14 BASELINES ON FIVE BENCHMARK DATA SETS. SPECIFICALLY, THE NUMBER

OF PARAMETERS, FLOPS AND THE PSNR/SSIM VALUES ARE REPORTED. THE FLOPS VALUES WERE COMPUTED USING A 1280×720 HR IMAGE. THE

PSNR/SSIM VALUES WERE CALCULATED USING THE Y CHANNEL. THE BEST AND SECOND BEST PSNR/SSIM VALUES ARE HIGHLIGHTED IN THE RED

AND Blue FONTS RESPECTIVELY. THE SIGN “-” INDICATES THAT THE RESULT WAS NOT REPORTED IN THE ORIGINAL LITERATURE. HERE, ↑ INDICATES

THAT THE HIGHER VALUE CORRESPONDS TO THE HIGHER IMAGE QUALITY.

Scale Network Params (M) FLOPs (G)
PSNR ↑ / SSIM ↑

Set5 Set14 B100 Urban100 Manga109

×2

SRCNN [50] 0.057 53 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 35.74/0.9661

FSRCNN [32] 0.012 6 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9694

VDSR [51] 0.665 613 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9729

DRCN [53] 1.774 17,974 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.63/0.9723

LapSRN [52] 0.813 30 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100 37.27/0.9740

CARN [54] 1.592 223 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 -

EDSR-baseline [55] 1.37 316 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 38.54/0.9769

FALSR-A [56] 1.021 235 37.82/0.9595 33.55/0.9168 32.12/0.8987 31.93/0.9256 -

IMDN [33] 0.694 161 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774

LAPAR-A [57] 0.548 171 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772

ECBSR-M16C64 [58] 0.596 137 37.90/0.9615 33.34/0.9178 32.10/0.9018 31.71/0.9250 -

SMSR [59] 0.985 132 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771

LBNet [60] - - - - - - -

ShuffleMixer [35] 0.394 91 38.01/0.9606 33.63/0.9180 32.17/0.8995 31.89/0.9257 38.83/0.9774

Ours 0.381 88 38.02/0.9606 33.64/0.9187 32.21/0.9001 32.05/0.9281 38.83/0.9777

×3

SRCNN [50] 0.057 53 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989 30.59/0.9107

FSRCNN [32] 0.012 5 33.16/0.9140 29.43/0.8242 28.53/0.7910 26.43/0.8080 30.98/0.9212

VDSR [51] 0.665 613 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9310

DRCN [53] 1.774 17,974 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.31/0.9328

LapSRN [52] - - - - - - -

CARN [54] 1.592 119 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 -

EDSR-baseline [55] 1.555 160 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439

FALSR-A [56] - - - - - - -

IMDN [33] 0.703 72 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445

ECBSR-M16C64 [58] - - - - - - -

LAPAR-A [57] 0.594 114 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441

SMSR [59] 0.993 68 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445

LBNet [60] 0.407 - 34.33/0.9264 30.25/0.8402 29.05/0.8042 28.06/0.8485 33.48/0.9433

ShuffleMixer [35] 0.415 43 34.40/0.9272 30.37/0.8423 29.12/0.8051 28.08/0.8498 33.69/0.9448

Ours 0.402 42 34.42/0.9273 30.37/0.8431 29.13/0.8058 28.16/0.8529 33.66/0.9453

×4

SRCNN [50] 0.057 53 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505

FSRCNN [32] 0.012 5 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280 27.90/0.8517

VDSR [51] 0.665 613 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8809

DRCN [53] 1.774 17,974 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.98/0.8816

LapSRN [52] 0.813 149 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560 29.09/0.8845

CARN [54] 1.592 91 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 -

EDSR-baseline [55] 1.518 114 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067

FALSR-A [56] - - - - - - -

IMDN [33] 0.715 41 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075

LAPAR-A [57] 0.659 94 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074

ECBSR-M16C64 0.603 35 31.92/0.8946 28.34/0.7817 27.48/0.7393 25.81/0.7773 -

SMSR [59] 1.006 42 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085

LBNet [60] 0.41 - 32.08/0.8933 28.54/0.7802 27.54/0.7358 26.00/0.7819 30.37/0.9059

ShuffleMixer [35] 0.411 28 32.21/0.8953 28.66/0.7827 27.61/0.7366 26.08/0.7835 30.65/0.9090

Ours 0.398 27 32.23/0.8957 28.69/0.7835 27.63/0.7376 26.16/0.7879 30.61/0.9101
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Fig. 7. Examples of the high-resolution images generated by our method. The image shown at the left part was generated at the resolution of 1024×1024
pixels while the four images displayed at the middle and right parts were generated at the resolution of 512×512 pixels.

TABLE III
COMPARISON OF OUR METHOD WITH THREE VQGAN [11] NETWORKS

BUILT USING DIFFERENT LIGHTWEIGHT BLOCKS FOR THE NATURAL

TERRAIN SCENE IMAGE RECONSTRUCTION TASK.

Network Params. (M) FLOPs (G) Rec. ↓ Perc. ↓

VQGAN-MobileNetV2 45.56 71.07 0.588 0.429

VQGAN-MobileNetV3 34.76 32.32 0.571 0.423

VQGAN-Next-ViT 46.60 60.31 0.503 0.364

Ours 43.34 52.74 0.472 0.342

TABLE IV
COMPARISON OF DIFFERENT CONVOLUTIONAL MODULES.

Module Params. (M) FLOPs (G) Rec. ↓ Perc. ↓

MobileNetV2 [21] 45.21 58.73 0.516 0.377

NCB [29] 44.15 59.08 0.507 0.363

FasterNet [70] 49.04 70.35 0.506 0.354

LFEB (Ours) 43.34 52.74 0.472 0.342

2) Impact of the Local Feature Extraction Block: To verify

the effectiveness of the proposed Local Feature Extraction

Block (LFEB), we replaced it by three modules, including the

bottleneck in the MobileNetV2 [21], the Next Convolution

Block (NCB) in the Next-ViT [29] and the base module in

the FasterNet [70], to build three networks. For the purpose

of fair comparison, the experimental setting was kept the same.

Table IV presents the number of parameters, FLOPs and two

loss values computed for each network. As can be seen, our

network which was built using the LFEB outperformed its

three counterparts while this network utilized fewer parameters

and run faster than the other networks.

3) Impact of the Efficient Feature Fusion Block: We also

replaced the right branch of the proposed Efficient Feature

Fusion Block (EFFB), which was an attention module in

essence, by two attention modules, including the Spatial-

TABLE V
COMPARISON OF DIFFERENT ATTENTION BLOCKS.

Attention Block Params. (M) FLOPs (G) Rec. ↓ Perc. ↓

SRA [28] 43.46 51.43 0.48 0.349

HA [71] 43.46 52.34 0.578 0.429

EFFB (Ours) 43.34 52.74 0.472 0.342

TABLE VI
COMPARISON OF DIFFERENT CONVOLUTIONAL KERNEL SIZES.

Kernel Size Params. (M) FLOPs (G) Rec. ↓ Perc. ↓

11×11 43.20 52.38 0.492 0.36

13×13 43.34 52.74 0.472 0.342

15×15 43.50 53.18 0.478 0.348

17×17 43.68 53.65 0.493 0.359

Reduction Attention (SRA) [28] and the Hydra Attention (HA)

[71] modules, to build two networks. Given that the same

experimental settings were used, the comparison is shown

in Table V. It can be observed that the network built using

the EFFB performed the better than its two counterparts.

However, our network used fewer parameters. Furthermore, we

examined the effect of the size of the convolutional kernel used

in the EFFB. As shown in Table VI, the 13×13 kernel achieved

a proper trade-off between the model size and performance.

4) Impact of the Complex Attention Block: Regarding the

ShuffleMixer [35], we adopted a variant by removing a Shuf-

fleMixer layer from each block. This variant is referred to

as ShuffleMixer−. The two parts in the right branch of the

Complex Attention Block (CAB), i.e., the decomposed 17×17

convolution and the 3×3 depthwise convolution, were added

into the ShuffleMixer− in turn. As a result, two additional

variants were derived. The first is referred to as +Conv17×17

and the second is the lightweight super-resolution network that

we adopted. The experiment was performed on the Urban100
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SSIM: 0.5797 SSIM: 0.5654 SSIM: 0.6093 SSIM: 0.6431

SSIM: 0.7358 SSIM: 0.7540 SSIM: 0.7791SSIM: 0.7368

SSIM: 0.5889 SSIM: 0.5795 SSIM: 0.6073 SSIM: 0.6640

Ground-Truth VQGAN-MobileNetV2 VQGAN-MobileNetV3 VQGAN-Next-ViT Ours

Fig. 8. The natural terrain scene image reconstruction results derived using three VQGAN [11] networks which were built using the blocks utilized by three
different lightweight networks, including MobileNetV2 [21], MobileNetV3 [22] and NextViT [29], respectively, and our Lit-VQGAN. Below each ground-truth
or reconstructed image, a magnified image of the sub-region in this image and the SSIM value computed between this image and the ground-truth image are
displayed in turn.

TABLE VII
THE EFFECT OF THE COMPONENTS OF OUR LIGHTWEIGHT

SUPER-RESOLUTION NETWORK.

Network Params. (M) FLOPs (G) PSNR/SSIM

ShuffleMixer− 0.352 24.42 26.03/0.7833

+Conv17×17 0.389 26.52 26.09/0.7855

Ours 0.397 26.98 26.16/0.7879

[67] data set with the upscaling factor of ×4. The FLOPs was

computed using the 1280×720 HR image. As reported in Table

VII, our method produced the best super-resolution result with

a slight sacrifice of the model size and computational speed.

VII. CONCLUSION

Since it is difficult to collect sufficient natural terrain scene

images, we aimed to overcome this challenge using image

generation techniques. To this end, we first collected a Natural

Terrain Scene Data Set (NTSD), which contains 36,672 images

divided into 38 classes. This data set can be used to train

and test image generation networks. Although state-of-the-art

image generation networks can be used for synthesizing terrain

scene images, high space complexity and heavy computational

demand are usually confronted. To address these issues, we

then proposed a Lightweight Vector Quantized Generative

Adversarial Network (Lit-VQGAN). This network was built

on top of two types of lightweight blocks. As a result,
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the parameters of the Lit-VQGAN were greatly reduced. In

addition, a lightweight super-resolution network was adopted

using Complex Attention Blocks (CABs). Compared with

the moving-window sampling and decoding scheme that the

VQGAN used, this network was able to perform the high-

resolution image generation task more efficiently. To our

knowledge, none of the NTSD and the Lit-VQGAN had

been exploited before. Our results demonstrated that the Lit-

VQGAN conducted the image generation task more efficiently

and effectively, in contrast to the VQGAN. We believe that the

promising results should be due to the lightweight but effective

blocks that we deliberately designed.
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