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SPGDD-GPT: Image-Text-Driven Generic Defect Diagnosis Using a

Self-prompted Large Vision-Language Model
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Abstract—Large Vision-Language Models (LVLMs) mainly
rely on template-generated textual descriptions to understand
defects. This reliance impairs the performance of these models
for Industrial Defect Detection (IDD) because they typically
lack specialized knowledge. On the other hand, the majority of
existing IDD methods only utilize the contrastive loss function
for image-to-text feature alignment, which limits their ability to
focus on defective regions. In addition, these methods usually
use cosine similarity for contextual learning, which also restricts
their ability to understand and adapt to complex contexts. To
address these issues, we first collect a large-scale defect data
set with textual descriptions, namely, the Text-Augmented Defect
Data Set (TADD), to fine-tune an LVLM for defect description.
We also propose a Self-prompted Generic Defect Diagnosis
(including Defect Detection and Defect Description) LVLM, i.e.,
the SPGDD-GPT. This method can effectively utilize contex-
tual information through a Multi-scale Self-prompted Memory
Module (MSSPMM) and a Text-Driven Defect Focuser (TDDF)
that we deliberately design, to adapt to unseen defect categories
and focus on abnormal regions. Experimental results show that
our method normally achieves the better performance than its
counterparts across the 21 subsets of TADD under the 1-shot,
2-shot and 4-shot defect detection settings, demonstrating strong
detection and generalization capabilities1. The proposed method
can also generate a textural description of the defects contained
in each test image. These promising results should be due to the
proposed MSSPMM and TDDF and the large-scale TADD.

Note to Practitioners—The proposed SPGDD-GPT is developed
on top of an LVLM. It is specifically designed for the few-
shot defect diagnosis task, including defect detection and defect
description, which requires only a small number of training
images. In real-world scenarios, the TADD effectively addresses
the lack of detailed textual descriptions in training data, signifi-
cantly alleviating the challenge of scarce textual data commonly
encountered by practitioners in the field of defect diagnosis.
By integrating a Text-Driven Defect Focuser (TDDF) and a
Multi-scale Self-prompted Memory Module (MSSPMM), the
SPGDD-GPT improves the alignment between visual and textual
information, thereby improving the adaptability and robustness
of the model in various scenarios. The TDDF explicitly adjusts
the distance between normal and abnormal text embeddings
through boundary hyperparameters, and achieves precise defect
detection by reducing the Euclidean distance between abnormal
image features and abnormal text representations, while the
MSSPMM uses multi-scale normal samples as self-prompts which
allow the model to rapidly adapt to novel object categories
with limited samples and effectively attend to defective regions.
Furthermore, the TADD consists of 35,741 images divided into 21
defect subsets with detailed textual descriptions that we annotate,
providing rich contextual information. This data set facilitates the
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Fig. 1: Comparison between the textual descriptions obtained
using two template generation methods, including WinCLIP
[1] and AnomalyGPT [2], and that we manually annotated.
A quality score (see Section VI-B) generated by GPT-4V [3]
is shown at the far right side of each description. As can be
seen, the templates that WinCLIP generated do not show an
effective text prompt functionality, while the templates that
AnomalyGPT generated only provide the information related
to the location of defects. In contrast, our annotations not
only reflect the general content of images, but also describe
the location, color, shape and other characteristics of defects.
These observations are consistent with the rankings of two sets
of scores.

more comprehensive understanding of defect characteristics and
enhances the generalizability of the model in real-world scenarios.

Index Terms—Defect detection, defect diagnosis, large vision-
language model, few-shot learning, vision-language alignment.

I. INTRODUCTION

INDUSTRIAL Defect Detection (IDD) is a critical step in
the manufacturing process, aiming to locate and identify

defects in images of industrial products. Current research on
IDD is usually focused on deep learning-based methods. Al-
though these methods [4, 5] have shown excellent performance
on various IDD benchmarks, they normally require a large
number of training images. In addition, the models trained
often fail to perform accurate predictions in out-of-distribution
or domain-shift scenarios. As a result, those methods are less
feasible in practical applications.

With the advancement of Large Vision-Language Models
(LVLMs), researchers have been applying them to defect
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detection tasks [6, 7], aiming to enhance the semantic un-
derstanding ability of these models through prior linguis-
tic knowledge. However, existing LVLM-based approaches
still face multiple challenges in practical applications. Many
methods [1, 2], which lacked textual data, could only utilize
template-based text prompts, which usually failed to generate
rich and diverse textual descriptions. As illustrated in Fig. 1,
these descriptions failed to capture essential defect attributes,
such as location, shape, color and context. This limitation
impairs the semantic understanding ability of the model.
Also, the feature fusion strategies that existing Vision-and-
Language (V+L) segmentation methods utilized, e.g., simple
multiplication [2, 8, 9, 10, 11], normally lacked the sophis-
tication for fine-grained alignment between intricate visual
characteristics of defects and detailed textual descriptions. As
a result, suboptimal performance may be achieved.

Furthermore, existing few-shot IDD approaches [1, 12, 13,
14, 15, 16, 17] were normally adopted on top of the cosine
similarity between normal and abnormal samples. However,
this simplistic measure cannot encode rich contextual infor-
mation and probably hampers effective adaptation to novel
objects or defects with minimal examples. In addition, LVLMs
have been pre-trained on a huge amount of ordinary Inter-
net image-text data, which captures the insufficient domain-
specific knowledge of industrial defects.

To overcome the aforementioned challenges, we introduce a
novel Self-prompted Generic Defect Diagnosis LVLM, which
is referred to as SPGDD-GPT. This method is able to not
only perform robust and generalizable few-shot IDD tasks
but also generate semantically rich textual descriptions of
defects. Recent studies have revealed that the performance
ceiling of LVLMs is often determined by the quality rather
than the quantity of annotations. For example, Deitke et al.
[18] demonstrated that a relatively small but meticulously
annotated data set can outperform web-scale noisy image-
text pairs in a variety of downstream tasks. Therefore, we
are motivated to construct a Text-Augmented Defect Data Set
(TADD), which amalgamates 21 publicly available defect data
sets and contains 35,741 images in total, for the sake of solving
the problem of semantically impoverished textual descriptions.
Each image has been annotated with a textual description (see
Fig. 1), which covers the category, location, shape, color and
other characteristics of defects.

For the sake of addressing the crude feature fusion issue,
we then propose a Text-Driven Defect Focuser (TDDF), which
explicitly optimizes the attention of the model towards defec-
tive regions by minimizing the Euclidean distance between the
image features of defects and the embeddings of corresponding
abnormal textual descriptions, while maximizing the Euclidean
distance between the defective images and the normal text
embeddings. We further design a Multi-scale Self-prompted
Memory Module (MSSPMM), to improve few-shot learning
capability. This module leverages the multi-scale representa-
tion of normal samples as a self-prompt, which guides the
model toward attending to defective regions and facilitates
rapid adaptation to unseen defects. To bridge the domain
knowledge gap without triggering catastrophic forgetting, we
use the TADD to fine-tune the frozen LLM by inserting a

trainable Adapter Module prior to this model. This design
enables the model to effectively acquire the rich domain-
specific knowledge of IDD while retaining its pre-trained
general knowledge and multi-turn dialogue capability.

As a result, the proposed SPGDD-GPT can be applied
to generic defect diagnosis (including defect detection and
defect description) tasks. To our knowledge, the LVLM has
not been explored in such a manner. Our contributions can be
summarized as fourfold.

1) We collect a defect data set, that is, Text-Augmented
Defect Data Set (TADD), which comprises 35,741 im-
ages divided into 21 subsets. We manually annotate a
textual description for each image. To our knowledge,
the TADD is the largest publicly available defect data
set with detailed textual descriptions, which will benefit
both the research and industrial communities.

2) We propose a Self-prompted Generic Defect Diagnosis
LVLM, i.e., SPGDD-GPT, which not only performs
robust and generalizable zero-shot or few-shot IDD tasks
but also generates semantically rich textual descriptions
of defects. In particular, a pre-trained LLM is fine-tuned
using the Adapter Module. This strategy enables our
model to acquire domain-specific IDD knowledge while
retaining its original multi-turn dialogue capabilities and
strong generalization performance.

3) We design a Text-Driven Defect Focuser (TDDF), which
leverages textual descriptions to enable the model to
focus on defective regions by optimizing the Euclidean
distances between image features and text embeddings
of normal/abnormal samples.

4) We adopt a Multi-scale Self-prompted Memory Module
(MSSPMM) in order to capture contextual information
from self-prompts obtained from multi-scale normal
samples and use the results of zero-shot defect detection
to focus on defective regions.

The rest of this paper is organized as follows. The related
work is reviewed in Section II. We describe the proposed
SPGDD-GPT in Section III. Our TADD is introduced in Sec-
tion IV. In Sections V and VI, experimental setup and results
are reported, respectively. Finally, we draw our conclusion in
Section VII.

II. RELATED WORK

A. Defect Detection

Existing defect detection methods can be categorized into
traditional methods and deep learning-based methods. Tra-
ditional methods normally used hand-crafted features and a
classifier to identify defects. Although these methods were in-
terpretable and computationally efficient, they often struggled
with complex or subtle defects due to their limited generaliz-
ability. Deep learning-based methods have become dominant
in the past decades, which normally leverage Convolutional
Neural Networks (CNNs) [19] or Vision Transformer (ViT)
[20] to learn discriminative features from training images.
These methods can be further divided into segmentation-
based methods and classification-based methods, which are
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used for pixel-level defect detection and image-level defect
categorization tasks.

The above deep learning-based methods typically require
a large number of annotated training images. However, it is
difficult to collect such a defective data set because defects
occur rarely by nature. In addition, those methods normally
trained a model using a specific defect data set [21, 22].
Nevertheless, the model lacked adaptability to new scenarios.
Unlike those methods, our SPGDD-GPT was built on top of
recent LVLMs [2, 23]. Due to the fine-tuning of a pre-trained
LLM using adapters with a relatively large comprehensive
defect data set and the Text-Driven Defect Focuser (TDDF),
our model can not only perform the generic defect detection
task, but also generate detailed textual descriptions of defects.

B. Large Vision-Language Models

Large Vision-Language Models (LVLMs) combine the ca-
pabilities of Large Language Models (LLMs) to perform
complex tasks which involve both computer vision and Natural
Language Processing (NLP) applications. As a pioneering
LVLM, Flamingo [24] integrated visual features into LLMs
via cross-attention layers. In [25], the MoE-LLaVA model
achieved efficient processing of the visual and language data
through a hybrid expert system. The LLaMA 3.2 [26] model
advanced multimodal research and applications by open-
sourcing both its LVLM and an on-device text-only variant.

On the other hand, many existing models, such as BLIP2
[9], InstructBLIP [27] and VPGTrans [28], used a Q-Former
model to feed visual features extracted using a Vision Trans-
former [20] into the Flan-T5 [29] model, which improved
their visual knowledge acquisition capability. In particular,
PandaGPT [23] enabled the multimodal input by connecting
ImageBind [30] with the Vicuna [31] model using a series of
linear layers.

Although the above-mentioned methods demonstrated the
potential of LLM-based multimodal methods, they were nor-
mally trained on general-purpose data sets and lacked the
domain-specific knowledge in IDD. In contrast, we fine-tuned
the pre-trained Vicuna [31] model using annotated defective
images and an adapter module. As a result, our model is able
to obtain the domain-specific IDD knowledge.

C. Zero-Shot and Few-Shot Defect Detection

Zero-Shot Defect Detection (ZSDD) aims to transfer a
model trained on a source domain to a target domain without
using the labeled data, while Few-Shot Defect Detection
(FSDD) aims to identify defects using only a limited number
of normal samples in the target data set. For example, existing
ZSDD models, such as WinCLIP [1], AnomalyCLIP [32], AA-
CLIP [7] and AdaCLIP [6], used a pre-trained Contrastive
Language-Image Pre-training (CLIP) [8] model to compare
the relative distances between test images in the feature space
with natural language descriptions of normal and abnormal
conditions. For the sake of distinguishing abnormal instances,
these distances were used to compute the scores.

FSDD models, e.g., InCTRL [14], aimed to serve as generic
defect detection models by evaluating the residuals calculated

between the query image and a small number of normal
sample prompts. In [2], Gu et al. leveraged LVLMs to de-
tect the presence and location of defects using a small set
of normal samples for contextual learning. However, ZSDD
models were often not generalizable and might struggle in real-
world scenarios, in which the performance of FSDD models
was inferior. Although AnomalyGPT described abnormal at-
tributes, the descriptions were usually simplistic and might be
incorrect. Nevertheless, the proposed SPGDD-GPT not only
achieves high accuracy in generic defect detection tasks but
also generates detailed descriptions of defects.

III. METHODOLOGY

To address the challenges that the application of LVLMs
to a specific domain of IDD encounters, we propose a Self-
prompted Generic Defect Diagnosis LVLM, i.e., SPGDD-GPT,
which is able not only to perform robust and generalizable
zero-shot or few-shot IDD tasks but also to generate se-
mantically rich textual descriptions of defects. Fig. 2 shows
the architecture of the SPGDD-GPT. As can be seen, the
SPGDD-GPT comprises six components, including an image
encoder adopted on top of VV-CLIP [33] (i.e., the Enhanced
VV-CLIP), an original CLIP [8] text encoder, a Text-Driven
Defect Focuser (TDDF), a Multi-scale Self-prompted Memory
Module (MSSPMM), an Adapter Module and a pre-trained
LLM (i.e., the Vicuna [31] model). The proposed method
can be applied to the zero-shot and few-shot defect detection
settings.

Within the zero-shot setting, image and text embeddings,
extracted using the image and text encoders, respectively,
are fed into the Text-Driven Defect Focuser (TDDF). The
TDDF generates a series of defect-focused feature maps by
modulating feature distances based on textual semantics. These
maps are then used for defect detection and are converted by
the Adapter Module to defect detection embeddings.

Regarding the few-shot setting, defect-focused feature maps
are obtained by calculating the distance between the query
image and the normal images stored in the MSSPMM and
multiplying it by the output matrix of the TDDF. This distance
is used as an attention weight to focus the model on defective
regions. The feature maps are then converted into a format
compatible with the input of the Vicuna [31] model via the
Adapter Module. The Vicuna model receives the adapted
output as input, which includes defect detection embeddings,
query image embeddings, text embeddings and learnable em-
beddings. The Vicuna model further generates a comprehen-
sive natural language response that includes a determination of
whether the image contains defects, along with detailed textual
descriptions specifying the location, category (e.g., scratches,
dents and cracks), appearance attributes (e.g., color, shape,
size and texture), and other relevant characteristics of defects
observed in the image.

A. Enhanced VV-CLIP
The original VV (Vision-Vision) attention mechanism [33]

can be formulated as

Attn(V, V, V ) = softmax
(
V · V T

√
d

)
· V. (1)
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Fig. 2: The architecture of the proposed Self-prompted Generic Defect Diagnosis LVLM (SPGDD-GPT), which consists of six
components, including an Enhanced VV-CLIP [33] image encoder, an original CLIP [8] text encoder, a Text-Driven Defect
Focuser (TDDF), a Multi-scale Self-prompted Memory Module (MSSPMM), an Adapter Module, and a pre-trained Vicuna
[31] model. Query images are first fed into the frozen Enhanced VV-CLIP [33] image encoder, to extract visual features.
These features are then sent to the TDDF, which computes the distances between both normal and abnormal text embeddings
and them. The result is a set of defect-focused feature maps. These feature maps along with the text embeddings, learnable
embeddings and query image embeddings are transformed using the Adapter Module before being fed into the Vicuna [31]
model. In particular, the result of defect detection is produced by the Adapter Module. The model further generates a detailed
textual description of the defects detected. In the few-shot scenario, the MSSPMM stores the multi-scale features of normal
samples and performs contextual learning by calculating the distance between query image embeddings and the most similar
reference sample in the memory bank.

VV-CLIP [33] used this mechanism to obtain local features.
Since global and local features were mixed together and fed
into the VV attention block at each layer, local features
were contaminated by global features while computational
complexity was increased. This process can be formulated as

Zl = Projl(Attn(Vl, Vl, Vl)) + Zori
l−1, (2)

where Zori
l−1 represents the global features at layer l − 1, Vl

represents the visual features at layer l, and Zl represents the
locally enhanced features at layer l.

To overcome the limitations of VV-CLIP [33] in defect
detection, we revise it by building a pure local feature extrac-
tion architecture through constructing two parallel branches

that completely decouple global and local operations. Our
Enhanced VV-CLIP is formulated as

Zl = Projl(Attn(Vl, Vl, Vl)). (3)

By eliminating the global feature branch Zori
l−1, our method

avoids the global feature contamination issue and reduces
computational complexity. As a result, it can focus more
on local characteristics, which are important for pixel-level
detection tasks.

As shown in Fig. 3, the Enhanced VV-CLIP produces two
outputs, i.e., the unaltered ZOri and the locally enhanced
feature maps Z. In particular, the CLS feature ZOri[0] ∈ Rd,
is designated for detecting defects at the image level, whereas
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Fig. 3: The image encoder that we adopt on top of the VV-
CLIP [33], i.e., the Enhanced VV-CLIP. In particular, we
introduce a parallel VV attention pathway within the image
encoder of CLIP [8], designed to preserve local features. This
improvement is useful for the pixel-level defect detection task.

the local feature maps Z[1 :] ∈ RT×d, can be used for the
pixel-level defect detection task.

B. Text-Driven Defect Focuser

To perform the defect detection task, existing image-text
alignment methods typically concatenate normal and abnormal
text embeddings and use them together with image features
to compute the contrastive loss. However, these methods
cannot effectively control the boundary between normal and
abnormal text embeddings and cannot optimize the distance
between defective image embeddings and text embeddings.
To address this problem, we propose a Text-Driven Defect
Focuser (TDDF), which introduces a boundary hyperparameter
in order to explicitly adjust the distance between normal and
abnormal text embeddings. As a result, the clearer boundary
guidance can be obtained, which enables the more accurate
alignment between defective image features and the corre-
sponding abnormal text embeddings.

The TDDF aims to increase the focus on defects in the query
image by minimizing the Euclidean distance between the
query image embedding and the semantically rich abnormal
text embeddings (which encode the descriptions of defect
categories and attributes). Meanwhile, the TDDF also aims to
suppress the focus on the normal regions of the query image by
maximizing the distance between the query image embedding
and the normal text embeddings. In this context, the TDDF
can sharpen the focus on defective regions and thus boost the
performance of defect detection.

Specifically, the loss function of the TDDF can be defined
as

LTDDF = max

(
0, d

(
z

∥z∥2
,

en

∥en∥2

)
− d

(
z

∥z∥2
,

ea

∥ea∥2

))
,

(4)
where d(·, ·) represents the Euclidean distance, en denotes
the normal text embedding, ea represents the abnormal text
embedding, and z stands for the query image embedding.
Within CLIP [8], the final features are projected onto the unit
hyper-sphere. Therefore, the features in LTDDF are normalized
and the margin is set to zero constantly. Compared with the
contrastive loss, i.e., LCLIP, LTDDF ensures that the distance
between normal text embeddings and abnormal image em-
beddings is greater than the distance between abnormal text
embeddings and abnormal image embeddings.

Furthermore, we use the squared L2 norm to separate the
distances between text embeddings

LSep = λ ·
∥∥∥∥ en

∥en∥2
− ea

∥ea∥2

∥∥∥∥2
2

, (5)

where λ is a hyperparameter used to control the degree of
separation of text features. Due to the use of LSep, we can
not only control the distance between normal and abnormal
text embeddings, but also optimize the boundary between the
defective area and the normal area of the query image.

The Euclidean distance da between the query image em-
bedding and the abnormal text embedding and the Euclidean
distance dn between the query image embedding and the
normal text embedding are computed. A set of defect-focused
feature maps can be generated by calculating the difference
between the two distance values:

∆d = dn − da. (6)

As a result, the defect region is enhanced. ∆d is then jointly
optimized with the loss function LTDDF, to ensure that the
defect-focused feature maps produce high response values
in abnormal regions and maintain low response values in
normal regions. Clear segmentation of the edge of defects
can be achieved through the gradient constraint of LSep. This
dual-loss design ensures that defective regions are precisely
localized while maintaining clear boundaries between normal
and defective regions.

C. Multi-scale Self-prompted Memory Module
Existing few-shot learning methods [1, 32, 33] mainly relied

on cosine similarity for contextual learning. They usually
failed to capture subtle local variations in defective images.
To address this limitation, we propose a Multi-scale Self-
prompted Memory Module (MSSPMM) that establishes hier-
archical memory embeddings from normal samples and lever-
ages them as self-prompts to enrich contextual information
learning. This module integrates multi-scale feature analysis
with dynamic prompt selection in order to enhance defect
localization.

To be specific, we randomly select N normal images as
memory samples. Multi-scale embeddings are extracted from
them using blocks 3, 8 and 12 of the Enhanced VV-CLIP im-
age encoder. These embeddings capture complementary visual
characteristics in different receptive fields. This hierarchical
representation is formalized as

ME = {ME(3),ME(8),ME(12)}, (7)

where block 3 focuses on local characteristics through embed-
dings of dimension N×225×896, block 8 captures mid-level
semantics with dimension N×225×768, and block 12 encodes
global context in dimension N × 225 × 640. Given a query
image, we similarly extract multi-scale embeddings

QE = {QE(3),QE(8),QE(12)}, (8)

and compute layer-wise L2 distance maps between the query
image embeddings and the memory embeddings

DM =

N⋃
i=1

∑
s∈{3,8,12}

∥QE(s) −ME
(s)
i ∥2. (9)
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The optimal difference map in terms of each memory
sample is further selected according to:

DM∗
i = argmin

DMi

∑
x∈DMi

x, (10)

which enables dynamic selection of the most relevant multi-
scale memory embeddings as self-prompts. After determining
the best difference map among the optimal difference maps
across the memory samples, we select the multi-scale memory
embedding corresponding to the best difference map as the
self-prompt and calculate multi-scale difference maps with the
query image using this prompt. Finally, we concatenate these
multi-scale difference maps along the channel dimension to
generate a defect attention map, AM ∈ RH×W×C .

This map is multiplied element-wise by the defect-focused
feature maps (DFFM) to learn contextual information. This
process can be expressed as:

FOut = AM⊙DFFM, (11)

where ⊙ denotes the Hadamard product and FOut represents
the resultant defect-focused feature maps. FOut is then fed
into the Adapter Module for adaptation transformation. As a
result, defect detection embeddings are produced, which can
be used as the input of the Vicuna [31] model. In essence, the
MSSPMM is able to effectively enhance contextual reasoning
under the few-shot settings by simultaneously preserving local
discriminability through fine-grained block 3 features and
maintaining global consistency via high-level block 12 repre-
sentations. In addition, block 8 features provide intermediate
semantic bridging.

D. Adapter Module

Inspired by studies on Prompt-Tuning in Parameter-Efficient
Fine-Tuning (PEFT) [34], we freeze the backbone and prepend
a lightweight Adapter Module that injects downstream defect
knowledge through prompt-tuning. Specifically, a small set
of learnable embeddings, trained on the manually annotated
TADD, are concatenated to the multi-modal input. Since
prompt-tuning uses far smaller number of parameters than
LoRA [35], the module is less prone to be overfitted in low-
data regimes and more robust when there is a large domain
gap. The Adapter Module consists of multiple linear layers, a
small set of learnable embeddings, and a concatenation opera-
tion. Each linear layer receives input embeddings of different
dimensions, but the output dimensions remain consistent. The
concatenation operation combines the outputs of those linear
layers, including defect detection embeddings, original query
image embeddings and text embeddings, with the learnable
embeddings and feeds them into the Vicuna [31] model.
Finally, the output of the model is a textual description of
the detected defects.

E. Loss Functions

To train our SPGDD-GPT, we employ four loss functions,
including LC (Cross-Entropy Loss), LI (Cross-Entropy Loss),
LSep and LTDDF. The cross-entropy loss function Lc is used to
supervise the generation of textual descriptions of defects by

the Vicuna [31] model. This function measures the discrepancy
between the tokens that the Vicuna model generates and the
ground-truth textual description contained in the TADD in
terms of an image. The function can be formulated as:

LC = −
n∑

i=1

yi log(pi), (12)

where n is the number of tokens, yi is the ground-truth label
for token i and pi is the predicted probability for token i.

To supervise the results of defect detection that the Adapter
Module generates, the cross-entropy loss function LI is em-
ployed. This function measures the difference between the
results of defect detection and the ground-truth of the cor-
responding defective images. LI can be expressed as:

LI = −
n∑

p=1

yp log(pp), (13)

where n denotes the number of pixels, yp stands for the
ground-truth label of pixel i in an image and pi represents
the predicted probability that the model produces at pixel i.

Finally, the overall loss function is defined as:

L = αLC + β(LTDDF + λLSeq) + γLI , (14)

where α, β and γ are the coefficients used to balance the four
loss functions. These coefficients were set to 1 by default in
our experiments.

IV. TEXT-AUGMENTED DEFECT DATA SET

Although there are many publicly available defect data sets,
they normally lack textual descriptions related to defects. This
issue prevents LLMs from being applied to these data sets. To
overcome this challenge, we collected 21 publicly available
defect data sets, which contained 35,741 images in total, and
manually annotated each image using a textual description.
These images and the associated textual descriptions are
comprised of a data set, referred to as the Text-Augmented
Defect Data Set (TADD).

The 35,741 images were captured from various samples,
such as fabrics, pavement, walls, electron commutators, tiles,
steel strips, tires, etc., under different conditions. The diversity
of these images enables the network to learn rich characteris-
tics of various defects related to different samples. As a result,
the generalizability of the model trained can be improved for
different real-world applications.

A. Publicly Available Data Sets

In this subsection, we briefly introduce the 21 publicly
available data sets. For more details, please refer to the original
publications.

1) Aitex: The Aitex [36] data set contains 245 fabric images
of seven textile structures. In total, 12 categories of defects are
included, such as yarn breaks, holes, stains, etc.

2) BSData: The BSData [37] data set consists of 1,104
micrographs of the surface of ballscrews captured on the pre-
cision drive component production line. Different categories
of defects are presented, such as pockmarks and pitting.
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3) CFD: As a pavement crack data set, the CFD [38]
data set includes 118 grayscale images of urban pavements,
which cover transverse, longitudinal and alligator patterns
under variable lighting, shadows and texture clutter.

4) Crack500: The Crack500 [39] data set contains 500
images of pavement cracks, captured on urban roads, including
longitudinal and transverse cracks and web cracks.

5) CrackTree200: The CrackTree200 [40] data set is a
challenging pavement crack data set, which contains 200
pavement images captured under varying conditions, such as
shaded, occluded, low-contrast and other complex conditions.

6) DeepCrack: The DeepCrack data set [41] comprises 537
images, spanning concrete and asphalt scenes, with three sur-
face textures, i.e., bare, dirty and rough. The cracks presented
in this data set range from hairline to centimetre-wide.

7) Eugen Miller: The Eugen Miller [42] data set contains
55 images with a blue cement wall as the background. The
defects mainly include single cracks, multiple intersecting
cracks and other categories.

8) VisA: The VisA [43] data set has a total of 10,821 im-
ages, divided into 12 categories of industrial parts. e.g., PCBs
and capsules. These images cover more than 40 categories of
defects, such as scratches, pits, and discoloration.

9) GAPs: The GAPs [44] data set contains 2,975 images
of German asphalt pavements collected from highway/urban
pavements with three types of defects, including cracks, pot-
holes and patches.

10) KolektorSDD: The KolektorSDD [45] data set consists
of 399 commutator images with different categories of defects,
such as scratches, ablations, etc., captured on the Kolektor
production line.

11) KolektorSDD2: The KolektorSDD2 [45] data set con-
tains 3,361 high-resolution commutator images, in which the
number of defect categories is increased to eight.

12) LIACI: The LIACI [46] data set contains 1,893 im-
ages of underwater hulls. Different categories of defects are
included, such as cracks, corrosion, scratches and paint flaking.

13) MT: The MT [47] data set consists of images of six
common categories of tile defects, including blowhole, break,
crack, fray, uneven and free (i.e., normal). In total, 1,344
images were captured from industrial magnetic-tile production
lines under uniform backlighting.

14) MVTec-AD: The MVTec-AD [48] data set consists of
5,354 images which cover five textures and ten objects. This
data set contains high-resolution images of 73 categories of
defects across a wide range of domains.

15) NEU: The NEU [49] data set comprises 1,800 images
of hot rolled steel strips. This data set covers six types of
defects, such as rolled scales, plaques, cracks, etc.

16) OUC-Crack: The OUC-Crack [50] data set was cap-
tured from the cracks on the wall surface using a drone at the
Laoshan Campus of Ocean University of China. This data set
contains 1,968 crack images in total.

17) Rissbilder: The Rissbilder [51] data set contains 1,500
images of road cracks, collected from German pavements.

18) RubberTires: The RubberTires data set includes 1,324
X-ray images of different categories of defects of rubber tires,
such as bubbles, foreign objects, etc.

19) RSDD: The RSDD [52] data set comprises 67 surface
crack images captured from express rails.

20) RSDD2: The RSDD2 [52] data set was acquired from
the surface of common/heavy haul rails. This data set consists
of 128 crack images.

21) Volker: The Volker [51] data set comprises 108 con-
crete surface images sourced from bridge decks and road
surfaces. In total, three categories of defects, including cracks,
spalling and corrosion, are included.

B. Textual Descriptions

The 21 data sets were merged into a single data set. We
manually annotated each of the 35,741 images using a textual
description. To be specific, each defective image in a data set
was annotated with a specific defect category, such as bubble,
crack, foreign object, scratch, etc. The category information
is useful for the model to identify and distinguish different
categories of defects. Both the location and color of defects
are also included in the textual descriptions. The location data
is able to guide the model toward localizing the defect, while
the color information offers an additional cue associated with
the appearance of the defect. In addition, some more detailed
information, such as the shape, size and texture of defects
are described. These rich contextual information of defects
allow the model to identify and understand defects in a more
comprehensive manner. Fig. 4 shows eight different defective
images and the associated textual descriptions.

The textual annotations contained in the TADD can serve
dual purposes. First, these descriptions provide rich contextual
information for multi-modal feature learning and alignment.
Second, they can act as the ground-truth data for training an
LLM in order to generate defect descriptions. Therefore, the
model trained using the TADD is able to learn complicated
characteristics and patterns of defects. In addition, the TADD
covers various categories of defects that occur with different
samples. In this case, the model tends to demonstrate strong
generalizability to a wide range of defect detection scenarios.
As a result, the model can achieve high accuracy and robust-
ness in defect detection and description tasks.

V. EXPERIMENTAL SETUP

In this section, we first introduce the baseline methods,
data sets and evaluation metrics used in this study. Then we
describe the implementation details of our experiments.

A. Baselines

In quantitative evaluation experiments, we utilized ten state-
of-the-art baseline methods, including SPADE [53], PaDiM
[54], PatchCore [55], WinCLIP [1], PromptAD [33], Anoma-
lyGPT [2], AnomalyCLIP [32], AA-CLIP [7], AdaCLIP [6]
and Myriad [56]. These methods cover three typical cate-
gories, including classical deep defect detection methods, the
image-text contrastive learning-based defect detection methods
and the LVLM-based defect detection methods. Within the
qualitative analysis, the proposed SPGDD-GPT was compared
with three LLM-based methods, including AnomalyGPT [2],
MiniGPT-4 [57] and PandaGPT [23].
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This  is  a  p ic ture  o f  a capsule 
placed on a white background. 
The capsule is half black and half 
red with the number 500 printed 
in white on the red side. There is a 
long white crack in the top of the red 
area of the capsule of this picture.

This is a picture of a black grid 
diagram.  There are three breaks in 
the top-centre,  bottom-lef t  and 
bottom-right of the grid of this picture.

This is a picture of a brownish-
yellow wooden board with light 
b lack str ipes .  There are  four 
diagonal white scratches in the right 
half of the board of this picture.

This is a picture of a black zipper. 
There is  a smal l  por t ion of  the 
z ipper ’s  teeth is  broken in  the 
bottom of the zipper of this picture.

This is a top-down view of an 
image contain ing four  whi te 
candles. There is a damaged area 
in the lower-right surface of the 
candle of this picture.

This is a picture of  a crescent-
shaped cashew nut that is yellow 
in color. There is a small white 
damage in the upper-left corner of 
the cashew of this picture.

This is a picture of a white piece of 
chewing gum. There is a crater-
shaped break in the far left of the 
white chewing gum of this picture.

This is a picture of a pcb board. 
This pcb board has 4 tentacles. 
There is a bent defect in the leftmost 
tentacle of the PCB board of this 
picture.

Fig. 4: Examples of the textual descriptions contained in our Text-Augmented Defect Data Set (TADD). The bold fonts provide
a general description of the image. The blue fonts indicate the category of defects, while the red fonts suggest the location of
defects. In addition, the underlined fonts indicate more detailed information of defects.

To ensure a fair comparison, all baselines were retrained
on the TADD data set. Regarding the classical methods (e.g.,
SPADE [53], PaDiM [54] and PatchCore [55]), we directly
employed their original implementations with default hyper-
parameters and parameter freezing strategies. In terms of the
LVLM-based methods (e.g., WinCLIP [1], PromptAD [33],
AnomalyGPT [2], Myriad [56] and AA-CLIP [7]), the official
codebases and parameter freezing strategies were utilized. For
the methods which used a few-shot setting in the original
publication, we strictly adhered to the original configurations.
When the methods (e.g., AnomalyCLIP [32] and AdaCLIP
[6]) did not address few-shot learning, we followed the setup
described in [2]. Since LVLM methods (e.g., AnomalyGPT
and Myriad) required fine-tuning, we utilized their original
fine-tuning strategies and configurations. All baselines used
the Adam optimizer with a learning rate of 1e-4. They were
trained at a batch size of 8 for 50 epochs.

B. Data Sets
The zero-shot defect detection experiment was conducted

on the MVTec-AD [48] and VisA [43] data sets, following
previous studies [1, 2, 32, 33]. The MVTec-AD [48] data set
contains 3,629 normal images and 1,725 abnormal images,
divided into 15 categories. In contrast, the VisA [43] data set
comprises 8,821 normal images and 1,200 abnormal images,
distributed in 12 categories. We used the same partitioning
strategy and random seed (SEED = 42) as those used in the
previous studies [1, 2, 32, 33] for the two data sets.

On the other hand, the few-shot defect detection experiment
was performed on the TADD, which comprises approximately
16,000 normal images and 19,500 abnormal images, divided
into more than 30 categories. We split the TADD into the
training, validation and testing sets, which contained 70%,
15% and 15% of the TADD, respectively. The splitting was
performed per category of defects in terms of each of the 21
data sets. This strategy ensured that the testing set covered
all categories of defects. It should be noted that at least
10 samples were retained in the testing set, to ensure the
reliability of evaluation for the categories which contained less
than 50 images. A fixed random seed (SEED = 42) was used
to guarantee experimental reproducibility.

C. Evaluation Metrics

Following the existing study [2], the Area Under the Re-
ceiver Operation Characteristic (AUROC) or the Area Under
the Curve (AUC) metric was used to measure the performance
of defect detection tasks. In terms of the image-level and
pixel-level tasks, the metric is referred to as Image-AUC
and Pixel-AUC, respectively. In addition, we assessed the
performance of our method by reporting the average accuracy
computed at the image-level based on the text responses of the
LVLM. This metric can serve as an important indicator of the
effectiveness of the LVLM-based defect detection methods.
Therefore, we use Image-AUC and Pixel-AUC to evaluate
the defect detection capability of the model, while evaluating
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TABLE I: The Image-AUC and Pixel-AUC values obtained
using ten baselines and our method in the zero-shot defect
detection experiment. Here, the data sets located at the left and
right sides of the arrow “→” denote the training and testing
data sets, respectively. In terms of each metric, the best result is
highlighted in the bold fonts. This continues for the following
tables.

Method VisA [43] → MVTec-AD [48] MVTec-AD [48] → VisA [43]

Image-AUC Pixel-AUC Image-AUC Pixel-AUC

SPADE [53] 77.9 80.4 75.3 77.8
PaDiM [54] 73.8 75.2 59.1 60.4
PatchCore [55] 79.5 82.8 73.8 76.7
WinCLIP [1] 91.8 85.1 76.4 78.1
PromptAD [33] 81.8 83.2 74.6 87.5
AnomalyGPT [2] 93.2 94.6 85.1 93.8
Myraid [56] 93.2 94.6 85.1 93.8
AnomalyCLIP [32] 91.5 91.1 82.1 95.4
AA-CLIP [7] 90.5 91.9 84.6 95.5
AdaCLIP [6] 90.0 89.9 84.3 95.5

SPGDD-GPT (Ours) 93.6 94.8 85.5 94.2

the textual description capability of the LLM using average
accuracy. With the use of these metrics, the overall defect
diagnosis capability of the model can be evaluated.

D. Implementation Details

Regarding the LLM utilized during the inference stage, we
used the pre-trained Vicuna-7B [31] model. Both the CLIP and
and ViT-B/16+ models pre-trained on the LAION-400M [58]
data set were utilized, following the study of WinCLIP [1]. We
set the resolution of images to 240×240 pixels. The learning
rate and batch size were set to 1e-4 and 8, respectively. The
network was trained for 50 epochs. Both the linear warm-
up and single-cycle cosine learning rate decay strategies were
used during the training stage. All experiments were conducted
on an RTX 4090 Graphics Processing Unit (GPU).

VI. EXPERIMENTAL RESULTS

In this section, we first present the results obtained in the
quantitative evaluation experiments. Then we report the results
derived in the qualitative analysis experiment. Finally, the
results of the ablation studies are described.

A. Quantitative Evaluation

In this subsection, we report the results that we derived in
the zero-shot and few-shot defect detection experiments.

1) Zero-Shot Defect Detection: In the scenario of zero-shot
defect detection, we compared the proposed method with ten
baselines. Two experiments were conducted on the MVTec-
AD [48] and the VisA [43] data sets, respectively. In particular,
a network was trained on the VisA [43] data set when the
model trained was tested on the MVTec-AD [48] data set,
and vice versa. The results are presented in Table I. It can be
seen that SPGDD-GPT achieved better, or at least competitive,
performance, compared to its counterparts. Specifically, it
derived the highest Image-AUC and Pixel-AUC values on the
MVTec-AD data set. Given that the VisA data set was used,
the Image-AUC value that our method derived ranked the first

while the Pixel-AUC value was relatively lower than those
produced by AA-CLIP [7] and AdaCLIP [6].

2) Few-Shot Defect Detection: In this experiment, the pro-
posed SPGDD-GPT and baselines were trained on our TADD
and tested on each of the 21 data sets. The performances of
defect detection and defect description were measured using
the Pixel-AUC and accuracy metrics, respectively. The exper-
iment was performed using three few-shot settings, including
1-shot, 2-shot and 4-shot. The Pixel-AUC values produced
by our method and the ten baselines in the three settings
are reported in Table II. As can be seen, our SPGDD-GPT
normally produced the best result on each data set, regardless
of which setting was utilized. This observation highlights the
robust generalizability of our method in the scenario of few-
shot defect detection.

In addition, we adopted the method that Gu et al. [2] pro-
posed in order to evaluate the accuracy of defect description.
Following the existing study [2], only the MVTec-AD [48] and
VisA [43] data sets were used for testing. As shown in Table
III, our method achieved the accuracy values of 90.1%, 89.0%,
and 88.7% on the MVTec-AD data set under the 1-shot, 2-
shot and 4-shot settings, which outperformed the second-best
method by 2.7%, 3.6% and 3.4%, respectively. When the
VisA data set was used, the accuracy values derived using
our method were 80.6%, 79.5% and 78.9% under the three
settings, which exceeded the accuracy values obtained using
the second-best method by 0.1%, 0.6% and 0.6%, respectively.
These results indicate that our method can generate proper
textual descriptions of defects in different few-shot settings.

B. Qualitative Analysis

We used an LLM-as-a-Judge scheme to assess the quality
of the textual descriptions that three state-of-the-art baselines,
including PandaGPT [23], MiniGPT-4 [57] and AnomalyGPT
[2], and our SPGDD-GPT generated on each TADD image in
the zero-shot setting. They were fed into GPT-4V [3], together
with the input image. In particular, GPT-4V was instructed
to produce a score, ranging from 0 to 100, for a pair of
textual description and image based on four criteria, including
correctness, completeness, fine-grained details (e.g., position,
color, shape, category, etc) and interpretability. If there was not
a defect, the sufficiency of the description of normal content
was additionally evaluated.

Using such an LLM-as-a-Judge scheme, we converted the
subjective assessment of “good” or “bad” into reproducible
and statistically meaningful numerical indicators, significantly
expanding the objectivity of qualitative analysis without extra
human efforts. The scores were averaged across all textual
descriptions generated by a method. The average scores com-
puted for PandaGPT, MiniGPT-4, AnomalyGPT and SPGDD-
GPT were 35, 41.5, 83.5 and 94, respectively. It was demon-
strated that our SPGDD-GPT produced more accurate and
informative textural descriptions, compared to its counterparts.

In Fig. 5, the textual descriptions generated using those
methods in terms of an image of the abnormal fabric are
compared. As can be seen, PandaGPT [23] only determined
whether or not a defect was present but could not understand
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TABLE II: The Pixel-AUC values derived using ten baselines and our method on the TADD in the few-shot defect detection
experiment. The experiment was performed for five runs and the average Pixel-AUC value was computed across these runs.

Setup Method

Data Set

A
itex

B
SD

ata

R
ubberTires

C
FD

C
rack500

C
rackTree200

D
eepC

rack

E
ugen

M
iller

G
A

Ps

K
olektorSD

D
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R
SD

D
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V
isa

Volker

1-Shot

SPADE [53] 48.6 56.8 66.3 64.9 55.0 48.8 62.6 73.7 50.7 54.7 61.8 51.2 63.2 91.2 57.3 54.9 66.3 87.5 83.4 95.6 59.2

PaDiM [54] 68.8 63.7 70.5 74.0 71.3 64.6 82.1 80.2 62.9 79.5 71.8 61.9 85.7 89.3 89.3 68.8 70.5 81.7 78.0 89.9 65.4

PatchCore [55] 63.6 50.6 59.7 87.5 65.8 80.2 66.5 82.5 55.3 74.8 85.8 50.8 83.2 92.0 62.3 57.9 59.7 60.8 54.7 95.4 54.1

WinCLIP [1] 92.8 75.6 80.4 90.0 74.5 86.4 82.8 87.2 75.0 89.7 87.6 77.3 92.8 95.2 91.5 55.5 80.4 84.4 70.8 96.4 83.2

PromptAD [33] 69.1 74.8 71.6 93.2 83.8 89.7 86.7 92.8 85.6 90.8 87.7 63.9 92.4 85.9 60.9 57.3 71.6 71.4 61.1 89.0 84.9

AnomalyGPT [2] 85.2 80.3 89.7 94.0 86.8 90.6 89.9 92.6 96.4 71.3 70.4 82.5 84.6 95.3 95.6 90.0 89.7 72.2 70.3 96.2 90.5

Myraid [56] 85.2 80.3 89.7 94.0 86.8 90.6 89.9 92.6 96.4 71.3 70.4 82.5 84.6 95.3 95.6 90.0 89.7 72.2 70.3 96.2 90.5

AnomalyCLIP [32] 82.1 79.3 87.2 93.1 85.5 89.2 80.4 91.7 96.0 87.2 86.5 62.4 83.2 90.6 78.8 65.5 87.2 71.0 69.4 89.8 89.8

AA-CLIP [7] 78.8 76.8 86.9 92.8 85.1 88.9 88.0 91.3 95.5 69.8 69.1 80.9 82.8 89.9 94.8 76.4 76.8 70.6 69.0 91.9 79.5

AdaCLIP [6] 73.4 80.6 76.3 89.3 84.2 88.5 79.0 89.1 96.4 88.6 87.2 81.7 84.0 87.6 83.2 60.1 74.3 71.5 69.8 81.2 85.6

SPGDD-GPT (Ours) 93.2 85.6 93.4 94.8 87.1 91.5 90.5 94.5 97.5 91.0 88.6 86.7 88.8 95.8 95.6 91.8 93.4 85.8 83.9 96.8 91.0

2-Shot

SPADE [53] 59.8 52.6 55.8 66.0 55.9 50.0 63.0 75.2 52.3 56.4 62.0 58.7 63.1 92.0 60.1 56.7 55.8 89.1 83.8 96.2 62.3

PaDiM [54] 69.3 68.4 73.2 74.5 72.9 64.5 82.9 82.2 63.1 82.1 73.2 64.6 86.0 91.3 89.8 80.2 73.2 81.8 77.9 92.0 65.4

PatchCore [55] 65.2 58.7 65.9 87.5 67.0 81.4 67.0 82.4 58.2 76.3 86.9 60.4 83.7 93.3 63.0 58.4 57.2 62.4 55.2 96.1 55.8

WinCLIP [1] 92.9 68.8 74.8 91.3 74.8 87.0 83.5 88.6 76.6 90.6 89.1 70.5 93.8 96.0 93.2 65.9 74.8 85.2 72.2 96.8 84.3

PromptAD [33] 71.4 72.6 81.4 94.8 84.0 91.9 88.5 93.0 85.8 90.8 88.4 75.6 93.2 86.4 62.7 57.9 81.4 73.6 63.0 89.8 85.7

AnomalyGPT [2] 87.2 84.6 91.5 95.8 88.1 91.9 91.2 93.9 97.5 72.6 72.4 85.3 86.7 95.6 96.0 92.3 91.5 74.8 72.0 96.4 91.6

Myraid [56] 87.2 84.6 91.5 95.8 88.1 91.9 91.2 93.9 97.5 72.6 72.4 85.3 86.7 95.6 96.0 92.3 91.5 74.8 72.0 96.4 91.6

AnomalyCLIP [32] 83.4 81.2 88.9 94.5 87.1 90.7 81.0 92.9 97.2 87.6 87.2 65.1 84.7 90.8 80.2 66.1 88.5 72.5 70.6 90.2 90.4

AA-CLIP [7] 80.1 78.4 88.3 94.0 86.6 90.2 89.5 92.4 96.8 71.3 70.7 82.6 84.2 91.0 95.0 76.8 78.0 72.0 70.1 93.4 80.9

AdaCLIP [6] 73.6 80.1 77.8 90.5 85.4 89.6 80.5 90.3 97.4 89.3 88.4 83.7 85.6 88.9 84.6 62.6 74.5 73.6 71.4 80.9 85.9

SPGDD-GPT (Ours) 93.6 88.5 93.7 96.3 89.5 92.7 91.8 95.0 97.8 92.4 90.3 89.4 90.8 95.9 96.7 93.2 93.7 87.0 85.6 97.2 93.8

4-Shot

SPADE [53] 60.6 54.2 57.4 66.4 57.3 51.7 64.1 75.8 53.2 57.9 63.2 60.1 65.0 92.7 62.0 58.4 57.4 91.8 84.5 96.6 63.9

PaDiM [54] 71.7 69.5 74.8 75.6 74.3 64.8 84.2 84.7 64.4 84.0 74.6 66.3 87.0 92.6 90.3 82.5 74.8 83.0 79.0 93.2 66.1

PatchCore [55] 66.8 59.8 67.5 88.3 68.3 81.8 67.9 84.3 60.6 76.8 87.4 61.6 84.9 94.3 64.5 60.1 67.5 63.8 56.5 96.8 57.4

WinCLIP [1] 93.4 69.6 75.4 93.0 76.2 87.8 83.8 89.7 77.3 91.6 90.7 71.4 95.7 96.2 94.5 57.9 75.4 86.5 73.4 97.2 85.6

PromptAD [33] 73.7 74.5 83.1 96.0 85.5 92.1 90.3 93.5 86.4 91.5 89.7 76.8 94.8 87.4 63.6 59.5 83.1 74.6 64.5 90.3 87.0

AnomalyGPT [2] 88.4 85.4 92.8 96.5 89.2 93.0 92.6 94.1 98.0 74.3 74.5 86.9 87.2 96.2 96.8 93.4 92.8 76.4 73.6 96.7 92.4

Myraid [56] 88.4 85.4 92.8 96.5 89.2 93.0 92.6 94.1 98.0 74.3 74.5 86.9 87.2 96.2 96.8 93.4 92.8 76.4 73.6 96.7 92.4

AnomalyCLIP [32] 85.3 82.4 90.1 95.0 88.9 92.2 82.0 93.8 97.6 89.5 88.4 70.4 87.1 92.4 81.6 69.4 90.2 75.1 73.0 91.3 90.8

AA-CLIP [7] 80.6 81.7 89.6 95.3 88.3 92.0 91.1 92.6 97.0 73.0 72.5 84.7 86.6 91.1 95.2 78.5 80.1 74.6 72.5 93.6 81.2

AdaCLIP [6] 76.2 83.1 79.9 92.3 86.9 91.4 82.8 90.8 98.0 90.3 89.1 86.0 87.9 89.8 86.5 65.9 75.6 76.2 74.0 83.5 86.6

SPGDD-GPT (Ours) 94.9 89.8 94.5 97.4 90.3 93.7 93.2 95.4 98.4 92.8 92.6 90.5 92.6 96.8 97.3 94.7 94.5 89.4 87.2 97.3 94.1

the content of the image or the defect; MiniGPT-4 [57] did
not work; and AnomalyGPT [2] recognized the defect and
pointed out its location, but failed to describe the attributes of
the defect. In contrast, our SPGDD-GPT not only identified

the defect but also described it in detail.
On the other hand, the textual descriptions generated using

the four methods with regard to the image of a normal pill
are compared in Fig. 6. It can be seen that PandaGPT [23]
detected a defect incorrectly and misunderstood the content
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TABLE III: The accuracy values obtained on the MVTec-AD
[48] and VisA VisA [43] data sets using different few-shot
setups.

Setup Method MVTec-AD VisA

1-Shot
AnomalyGPT [2] 86.1± 1.1 77.4± 1.0

Myraid [56] 87.4± 0.9 80.5± 1.2

SPGDD-GPT (Ours) 90.1 ± 1.9 80.6 ± 1.7

2-Shot
AnomalyGPT [2] 84.8 ± 0.8 77.5 ± 0.3

Myraid [56] 85.4 ± 0.7 78.9 ± 0.5

SPGDD-GPT (Ours) 89.0 ± 2.3 79.5 ± 1.6

4-Shot
AnomalyGPT [2] 85.0 ± 0.3 77.7 ± 0.4

Myraid [56] 85.3 ± 0.3 78.3 ± 0.3

SPGDD-GPT (Ours) 88.7 ± 2.3 78.9 ± 1.7

of the image, while MiniGPT-4 [57] correctly identified the
absence of a defect but inaccurately understood the image.
Although AnomalyGPT [2] correctly determined there was not
a defect, it described the image roughly. Compared with these
baselines, the proposed SPGDD-GPT confirmed the absence
of a defect and described the content of the image in detail.

C. Ablation Studies

To investigate the effectiveness of different modules in
the proposed network, we conducted a series of ablation
experiments. Specifically, we examined the impact of the
Text-Driven Defect Focuser (TDDF), the Multi-scale Self-
prompted Memory Module (MSSPMM), the Adapter Module
and the Enhanced VV-CLIP. In addition, we compared two
different fine-tuning approaches for the Vicuna [31] model.
For simplicity, the network was trained using our TADD but
was tested on the MVTec-AD [48] and VisA [43] data sets
under the 1-shot setting.

1) Impact of the Text-Driven Defect Focuser (TDDF):
We obtained a variant (w/o TDDF) of the SPGDD-GPT by
replacing the TDDF with a simple image and text embedding
multiplication operation. In essence, cosine similarity and the
standard contrastive loss of CLIP [8] were used in this case. A
second variant (Only TDDF) was derived by removing both the
MSSPMM and the Adapter Module from the SPGDD-GPT.
Without the Adapter Module, this variant could not generate
a textual description, and thus the accuracy metric was not
applicable. We compared the results produced by the SPGDD-
GPT (w/ TDDF) with those derived using the two variants in
Table IV. It can be seen that our SPGDD-GPT performed
much better using the TDDF than it did without the TDDF or
only using the TDDF, no matter which metric was considered
across the two data sets. This finding highlights the important
role of the TDDF in focusing the model on defective regions.

2) Impact of the Multi-scale Self-prompted Memory Module
(MSSPMM): In Table V, we compare the results derived using
our SPGDD-GPT with and without the MSSPMM. As can be
observed, the use of the MSSPMM improved the performance
of the SPGDD-GPT. In particular, the MSSPMM boosted the
Image-AUC, Pixel-AUC and accuracy values by 2.6%, 2.5%
and 1.1% on the MVTec-AD [48] data set and by 2.4%,
3.3% and 1.8% on the VisA [43] data set, respectively. This

Could you please describe this image and check if this 
image contains any defects and if so, describe the defects.

PandaGPT

Yes,there is an anomaly in the image.This photo is of a 
carpet, but a finger is visible in the photo, which has 
nothing to do with the carpet. This is an unusual and 

unnatural detail, different from what would be expected 
from a photograph of a rug.

AnomalyGPT
Yes, there is an anomaly in the image,at the bottom left of 

the image.The object in the image is a piece of fabric, 
specifically a piece of wool.

MiniGPT-4No, there is no anomaly in the image.

SPGDD-GPT 

Yes, there is an anomaly in this picture of braided fabric. 
This picture is a picture of a gray braid, and in the center 
of this picture there is a black scratch which resembles a 

scratch made with a knife.

20
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85
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Fig. 5: Comparison of the textual descriptions generated using
PandaGPT [23], MiniGPT-4 [57], AnomalyGPT [2] and our
SPGDD-GPT with regard to a fabric image with a scratch. A
score generated by GPT-4V [3] is shown at the left side of
each textual description. Compared to the three baselines, our
SPGDD-GPT not only identifies and localizes the defect but
also produces the detailed description of the color, shape and
additional attributes of the defect.

Could you please describe this image and check if this 
image contains any defects and if so, describe the defects.

MiniGPT-4No, there is no anomaly in the image.It appears to be a 
white pill with the word “f” written in red ink on the surface.

AnomalyGPTNo, there is no anomaly in the image.This is a white pill.

PandaGPT

Yes, there is an anomaly in the image.This image shows 
a cat sitting on a plate with the cat hidden from view by 

the color black. This is an unusual and unexpected detail 
in the scene.

SPGDD-GPT 

No, there is no anomaly in this picture. This picture is a 
picture with a black background color and a white pill 

placed in the middle of the picture. The center of the pill 
is stamped with a pattern of two F's for the letter F and 

there are some red dots on the pill as well.
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Fig. 6: Comparison of the textual descriptions generated using
PandaGPT [23], MiniGPT-4 [57], AnomalyGPT [2] and our
SPGDD-GPT in terms of a normal image which contains a
pill. A score generated by GPT-4V [3] is shown at the left side
of each textual description. In contrast to the three baselines,
our SPGDD-GPT not only correctly determines the absence
of defects but also generates the detailed characterization of
the image content.

TABLE IV: Comparison between the Image-AUC, Pixel-AUC
and accuracy (Acc.) values obtained using the SPGDD-GPT
with and without the TDDF and only with the TDDF on the
MVTec-AD [48] and VisA [43] data sets.

Method MVTec-AD VisA

Image-AUC Pixel-AUC Acc. Image-AUC Pixel-AUC Acc.

w/o TDDF 87.4 88.6 86.5 81.7 83.6 76.7
w/ TDDF 95.2 95.8 90.1 88.5 96.8 80.6
Only TDDF 92.9 94.0 - 86.0 93.5 -

observation should be due to the ability of the MSSPMM to
focus on abnormal regions by capturing contextual information
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TABLE V: Comparison between the Image-AUC, Pixel-AUC
and accuracy (ACC.) values obtained using the SPGDD-GPT
with and without the MSSPMM on the MVTec-AD [48] and
VisA [43] data sets.

Method MVTec-AD VisA

Image-AUC Pixel-AUC Acc. Image-AUC Pixel-AUC Acc.

w/o MSSPMM 92.6 93.3 89.0 86.1 93.5 78.8
w/ MSSPMM 95.2 95.8 90.1 88.5 96.8 80.6

TABLE VI: Comparison between the Image-AUC, Pixel-AUC
and accuracy (ACC.) values obtained using the SPGDD-GPT
with and without the Adapter Module on the MVTec-AD [48]
and VisA [43] data sets.

Method MVTec-AD VisA

Image-AUC Pixel-AUC Acc. Image-AUC Pixel-AUC Acc.

w/o Adapter 94.8 95.1 89.4 87.6 95.7 79.5
w/ Adapter 95.2 95.8 90.1 88.5 96.8 80.6

TABLE VII: Comparison between the Image-AUC, Pixel-AUC
and accuracy (ACC.) values derived using the SPGDD-GPT
with different image encoders on the MVTec-AD [48] and
VisA [43] data sets.

Image Encoder MVTec-AD VisA

Image-AUC Pixel-AUC Acc. Image-AUC Pixel-AUC Acc.

CLIP [8] 75.2 76.9 70.5 75.9 77.5 64.2
MaskCLIP [59] 91.2 92.4 89.5 90.6 92.8 80.1
Enhanced VV-CLIP 95.2 95.8 90.1 88.5 96.8 80.6

and using the result of zero-shot defect detection.
3) Impact of the Adapter Module: We examined the effect

of the Adapter Module by comparing the results produced by
the SPGDD-GPT with and without this module in Table VI. As
can be seen, the utilization of the Adapter Module improved
the performance of our method on both the MVTec-AD [48]
and VisA [43] data sets. It is indicated that the Adapter Module
not only optimized the accuracy of text generation but also
enhanced the ability of the model to detect defects.

4) Impact of the Enhanced VV-CLIP: In addition to the
Enhanced VV-CLIP that we adopted, we tested two different
image encoders, including CLIP [8] and MaskCLIP [59],
together with the proposed SPGDD-GPT. As reported in Table
VII, our Enhanced VV-CLIP normally produced the better
result on both the MVTec-AD [48] and VisA [43] data sets,
compared with its counterparts. This finding should be due to
the stronger feature representation ability of the Enhanced VV-
CLIP than those of CLIP and MaskCLIP, which also improved
the performance of defect description.

5) Impact of the Fine-Tuning Approach: We also applied
LoRA [35] to fine-tuning the Vicuna [31] model for compari-
son purposes. The results produced by our SPGDD-GPT using
two fine-tuning methods are reported in Table VIII. It can be
observed that the model fine-tuned using the Adapter Module
always outperformed that fine-tuned using LoRA across the
two data sets. By referring to Table VI, we can find that
the model that has not been fine-tuned produced the same

TABLE VIII: Comparison between the Image-AUC, Pixel-
AUC and accuracy (ACC.) values derived using the SPGDD-
GPT with different fine-tuning approaches on the MVTec-AD
[48] and VisA [43] data sets.

Method MVTec-AD VisA

Image-AUC Pixel-AUC Acc. Image-AUC Pixel-AUC Acc.

LoRA 94.8 95.1 86.4 87.6 95.7 75.2
Adapter 95.2 95.8 90.1 88.5 96.8 80.6

Image-AUC and Pixel-AUC values as those produced by the
model fine-tuned using LoRA. This finding is due to the fact
that the fine-tuning operation does not affect the performance
of defect detection. However, the model fine-tuned using
LoRA achieved the worse defect description result (Acc.)
than that produced using the model without fine-tuning. These
results demonstrate that the Adapter Module is useful for
improving the performance of the model for defect description
by enhancing the adaptability of the model to various defects.

D. Failure Analysis

Although the proposed SPGDD-GPT has achieved promis-
ing performance, it still exhibits two limitations. One lim-
itation arises with sub-patch-scale defects. For instance, a
microscopic scratch (approximately 2 pixels or 0.2 mm in
width) occurs on a PCB (see Fig. 7(a-b)). In this case, the
defective area is much smaller than the 16×16 patch used in
the local processing branch of our Enhanced VV-CLIP while
the local self-attention mechanism likely fails to capture a
response from the patch containing the defect. As a result,
our model will miss the scratch. A second limitation will
occur when the color or intensity of the defects is nearly
identical to the substrate material (see Fig. 7(c-d)). In such
a scenario, the color- or intensity-related textual embeddings
generated by the text encoder of CLIP provide a weak or non-
discriminative representation. This prevents the TDDF from
effectively separating the defect from the background based
on the color or intensity cue, resulting in confusion and the
failure to identify the defective region. The two limitations
reveal the dependencies of our method on the granularity of the
image encoder and the discriminative power of text encoder
for fine-grained visual attributes, respectively.

E. Statistical Significance Analysis

To validate the significance of the performance gain that
our method achieved, we performed a paired t-test between the
results derived using our method on the 21 data sets and those
produced by the best baseline on each data set. Given that the
Pixel-AUC values reported in Table II were used, SPGDD-
GPT achieved statistically significant advantages across all
few-shot settings. Specifically, the performance gains are
+1.37% (p = 0.019), +1.40% (p = 0.004) and +1.70% (p =
0.00033) in the 1-shot, 2-shot and 4-shot settings, respectively.
The consistently significant results (p < 0.05 to p < 0.001),
coupled with the superior performance on 15 to 18 out of the
21 data sets, demonstrate the effectiveness and robustness of
our method.
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Fig. 7: Examples of typical failure cases produced by the
proposed SPGDD-GPT.

VII. CONCLUSION

In this paper, we constructed a large-scale defect data
set, namely, the Text-Augmented Defect Data Set (TADD).
This data set contained 35,741 images across 21 defect sub-
sets, together with the detailed textual descriptions that we
annotated, which provided rich contextual information for
training a Large Vision-Language Model (LVLM). In addi-
tion, we proposed a Self-prompted Generic Defect Diagnosis
(including defect detection and defect description) LVLM,
i.e., the SPGDD-GPT. Specifically, we deliberately designed
a Text-Driven Defect Focuser (TDDF) and a Multi-scale Self-
prompted Memory Module (MSSPMM). The TDDF leveraged
textual descriptions to focus the model on defective regions by
optimizing the Euclidean distance between defective image
features and text embeddings, while the MSSPMM used a
small number of normal samples as memory to help the
model quickly adapt to unseen defects and focus on defective
regions. Experimental results demonstrated that the SPGDD-
GPT normally achieved the better defect detection and defect
description performances, compared to its counterparts. We
believe that the promising results are due to the large-scale
TADD and the proposed MSSPMM and TDDF.
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