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Scene Understanding
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Abstract—This paper presents a single object tracker that
incorporates scene understanding, referred to as SU-STTrack,
which explicitly encodes the contextual information by the given
or Multi-modal Large Language Model (MLLM) generated
descriptions of the tracking scene. SU-STTrack merges the lin-
guistic contextual prompts encoded using a pre-trained LLM and
visual features using a dual attention mechanism to strengthen
tracking robustness and adaptability, where channel attention
blocks are fixed within a multi-modality feature fusion process.
The experience replay strategy is further proposed, to maintain
long-term tracking performance by periodically refreshing the
tracking template with accumulated experiences, preventing the
model from catastrophic forgetting. SU-STTrack enables both
vision-only and vision-language tracking tasks to share the same
parameters. Through extensive experiments on vision-language
data sets (TNL2k, LaSOT and LaSOText) and vision-only data
sets (UAV123, NfS and OTB100), our tracker achieves 0.569 on
TNL2K, 0.628 on the challenging LaSOT, 0.528 on LaSOText,
0.646 on UAV123, 0.603 on NfS and 0.718 on OTB100 in terms
of the Area Under the Curve (AUC) metric with the inference
speed of 36.3 FPS. SU-STTrack normally surpasses state-of-the-
art methods and shows superior generalization ability across
diverse and challenging tracking scenarios1.

Impact Statement—SU-STTrack not only offers a solution for
both the vision-only and vision-language tracking tasks, but also
improves tracking performance using the proposed dual attention
mechanism and experience replay strategy. Experimental results
derived on multiple data sets show the superior performance
and generalization ability of SU-STTrack. This study advances
the field of object tracking, which provides a new approach that
leverages the language and vision information effectively, and
has the potential to be applied to various practical scenarios,
such as surveillance, robotics, surgical instrument tracking and
autonomous driving, improving the accuracy and reliability of
tracking systems. However, two critical considerations should be
paid attention to, including the risk which is dependent on the
generated text may propagate bias, and the ethical concerns, such
as a lack of accountability, which also requires mitigation.
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I. INTRODUCTION

OBJECT tracking [1]–[3] is a vital task of computer vision
aimed at tracking the movement of a target in video

frames given its initial location in the first frame, where
the temporal information should be encoded. It has been
applied to robotics [4], medical imaging [5], military [6] and
autonomous vehicles [7]. Primarily, the tracking approaches
can be categorized into two classes, i.e., generative tracking
methods and discriminative tracking methods. For generative
tracking methods, they rely on the prior knowledge of the
target by constructing a detailed model, such as its statistical
distribution characteristics of the appearance of the target.
Representative methods include strategies which are designed
based on sparse representation [8] and model construction with
graph theory [9] [10]. These methods delve deeply into the
intrinsic feature of the target, offering a bottom-up solution to
tracking tasks.

In contrast to the generative methods, discriminative track-
ing methods, such as the correlation filtering algorithm [11],
adopt a more direct strategy for simplifying the complex
tracking issue into a straightforward binary classification prob-
lem, which aims to differentiate between the target and the
background [12]. The advantage of these methods lies in their
ability to leverage powerful classifiers, e.g., Convolutional
Neural Networks (CNNs) and Siamese Networks [13], [14],
to enhance the accuracy and robustness of object tracking.

As computer vision and machine learning techniques con-
tinue to advance, the two types of methods have also been
evolving and integrating. For instance, generative methods can
draw on classification ideas from discriminative methods to
improve the generalization ability of the model. Similarly,
discriminative methods can incorporate appearance modeling
techniques from generative methods to enhance adaptability
to complex scenes. Despite the remarkable performance can
be achieved using these approaches, they are still mainly
focused on the analysis of the target itself and heavily rely on
the heuristic assumptions of image regions, e.g., appearance
consistency and motion consistency [15]. These assumptions
may be insufficient when the target has dramatic appearance
changes, occlusions and unpredictable motions.

Moreover, those methods tend to overlook the critical in-
teractions between the target and its surrounding environment
(see Fig. 1(a)). Although some recent work [16] paid attention
to the importance of scene information, their focus was limited
to spatial relationships of surroundings, which ignored the
more complex and dynamic interplay between the target and
the scene. It should be noted that the semantic information
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(b) Tracking process of the proposed SU-STTrack with scene understanding.

Fig. 1: Comparison between the existing trackers and SU-
STTrack. Here, (a) illustrates the traditional trackers, which
solely rely on the pixel-based template similarity and disregard
the contextual semantic information within the scene, while
(b) demonstrates the proposed tracker that captures contextual
prompts from the surrounding by extracting linguistic features.

could be helpful in tracking [15]. For instance, a car driving
on a road will exhibit predictable motion patterns aligned with
the constraints of the road, such as maintaining a straight path
or making smooth turns. In contrast, an athlete performing
in a gymnasium is likely to demonstrate highly irregular
movements, such as jumps, spins and abrupt direction changes.
In other words, the semantic context of the scene imposes
inherent constraints on the possible movements of the target.

To address the above issues, we therefore introduce a novel
scene understanding tracker, namely, SU-STTrack, which en-
codes contextual prompts using a pre-trained Large Language
Model (LLM) in both the vision-language and vision-only
scenarios (see Fig. 1(b)). This tracker utilizes not only visual
features but also scene descriptions for vision-language tasks.
For vision-only tasks, SU-STTrack generates captions using
a pre-trained Multi-modal Large Language Model (MLLM)
to grasp scene context, merging it with visual cues. It de-
rives a global semantic representation from descriptions or
captions and merges visual and linguistic features through
two Channel Attention Blocks (CABs) before passing them
to the text and image encoders. A corner-based prediction
head forecasts tracking outcomes, while an experience replay
system refreshes templates with historical and new images,
enabling the tracker to review the past data and adjust to
scene variations. The proposed SU-STTrack achieves a proper
trade-off between the tracking accuracy and the speed (see
Fig. 2). To our knowledge, single target tracking has not been
performed in such a manner.

The contributions of this study can be summarized in three
aspects below.

1) We introduce a novel end-to-end framework built upon
contextual prompts, referred to as SU-STTrack. With
powerful cross-modal learning, this framework achieves
excellent performance in both the visual-only and visual-
language tracking tasks.
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Fig. 2: Comparison between the proposed SU-STTrack and
state-of-the-art trackers on LaSOT [17] in terms of the tracking
accuracy (AUC) and speed.

2) We design a dual attention mechanism that enables the
network to account for both low-level texture features
and high-level semantic features and eliminates redun-
dancy when fusing linguistic and visual features.

3) We propose an experience replay-based template update
method, which allows the tracker to learn more historical
information and avoid catastrophic forgetting.

The remainder of this paper is organized as follows. We first
review the relevant work in Section II. The proposed approach
is then introduced in Section III in detail. In Section IV, we
report the experimental setup and results. Finally, we draw our
conclusion in Section V.

II. RELATED WORK

A. Vision-Only Trackers

Vision-only trackers operate solely on video frames to
predict the subsequent positions given the initial state. In
particular, semantic tracking has gained attention as it helps
capture contextual cues beyond raw pixel information. While
Convolutional Neural Networks (CNNs) have been used in this
context, Transformer-based trackers have recently emerged as
a powerful alternative [18] due to their ability to capture long-
range dependencies and a larger receptive field, making them
particularly effective for semantic tracking tasks.

1) Semantic Tracking: Traditional single-object tracking
methods mainly rely on low-level visual features, such as color
histogram, texture and shape [19], [20]. In contrast, semantic
tracking leverages high-level semantic information to enhance
tracking performance. This information typically comes from
pre-trained deep learning models to extract the category and
contextual information of targets [9], [21]. By integrating
semantic information into the tracking process, trackers can
better understand the essence of the target region and the
background, thereby improving the robustness and accuracy
of tracking. For instance, Xiao et al. [15] combined the
recognition of target categories in the online tracking process
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using inter-supervised networks, distinguishing targets from
the background by capturing general and distinctive features.

The GOTURN tracker [22] used CNNs to learn generic
object tracking, which showed that deep features could
enhance tracking robustness across different scenarios.
SiamRPN++ [23] utilized a more powerful feature backbone,
allowing the tracker to maintain high precision in complex
and clustered scenes. On the other hand, ATOM [24] achieved
higher accuracy and more robust target tracking by combining
semantic information and maximizing the overlap rate. In
addition, D3S [25] proposed a deformable Siamese network
that enhanced tracking performance using spatial supervision
information. LSSiam [26] resorted to adding a smaller network
for learning local semantic features, incorporating a classifi-
cation branch into the classical Siamese framework.

2) Transformer-Based Tracking: By capturing broader con-
textual information, transformers enable more accurate track-
ing in complex environments [27], as they excel at capturing
long-range dependencies through self-attention mechanisms.
For instance, Wang et al. [5], Zhao et al. [28] and Chen et
al. [29] utilized the encoder-decoder mechanism to replace
traditional cross-correlation operations. This enabled a deep
analysis of interdependencies between the target object and
the global scene context. TransT [29] introduced the trans-
former architecture in a hybrid model that combined it with
traditional tracking methods, demonstrating its potential in
real-time tracking tasks. STARK [30] further optimized the
application of the transformer, achieving end-to-end tracking
and capturing long-range dependencies in both spatial and
temporal dimensions. Recent research, such as FFTrack [31],
has achieved breakthrough progress in single object track-
ing tasks. FFTrack [31] combined high-frequency and low-
frequency features with two-stage frequency fusion. In [32],
CoTracker was introduced which tracked points jointly using
the token proxies fed into Transformer.

B. Vision-Language Trackers

The concept of Vision-Language (VL) tracking was first
introduced by Li et al. [33], which facilitated the develop-
ment of subsequent studies. Li et al. [33] designed a unified
local-global-search framework from the perspective of cross-
modality retrieval. In recent years, key advancements have
further developed vision-language trackers. Zhao et al. [34]
designed a fusion module based on a transformer network and
proposed proxy tokens, enabling the model to leverage textual
information more effectively. Zhang et al. [35] introduced a
multi-modality alignment module and achieved feature inte-
gration in a unified backbone to improve semantic guidance.

Feng et al. [11] designed a generally applicable module
named SNLT and SNLT-RPN for all Siamese trackers, promis-
ing to improve vision-language tracker performance in the
future. Chen et al. [36] present a sequence-to-sequence learn-
ing framework named Seqtrack, which cast visual tracking as
a sequence generation problem and predicts object bounding
boxes in an autoregressive fashion, similarly, MMTrack [37]
cast vision-language tracking as a token generation task. By
leveraging that textual semantic information, these trackers can

handle cases where visual similarity alone is insufficient, such
as when targets are visually similar or undergo appearance
changes. Therefore, in our study, we encode that linguistic
information as contextual prompts in our tracker.

C. Template Update

Early siamese-based trackers, such as SiamFC [38] and
SiamRPN [39], relied solely on a static initial template ex-
tracted from the first frame. These trackers lacked adapta-
tion to variations in the target appearance, which inevitably
led to tracking drift in dynamic scenarios. To address this
limitation, recent research was focused on adaptive template
update mechanisms. For example, a confidence threshold-
based update mechanism was used, such as TATrack [40].
A Transformer-based framework was also utilized, such as
STARK [30], which captured long-term dependencies by
means of historical information. Although template update
mechanisms have drawn the attention of researchers, many
tracking frameworks avoided them in order to maintain archi-
tectural simplicity, including OneTracker [41]. In contrast, our
experience replay mechanism extends the temporal receptive
field to the initial frame rather than using the latest frame.

III. OUR APPROACH

In this section, we will introduce the proposed multi-
modality tracking framework, i.e., SU-STTrack. This frame-
work can be used for both the vision-language and vision-only
tracking tasks. The pipeline of SU-STTrack is shown in Fig. 3.

A. Overall Network Architecture

The proposed SU-STTrack contains four modules, including
contextual prompt-based feature extraction, adaptive multi-
modality feature fusion, prediction and experience replay. The
pipeline of SU-STTrack is displayed in Algorithm 1 and Fig.
3. The input of SU-STTrack is a frame image along with text
descriptions or only a frame image. Then a search region is
cropped from the image, which will be fed into the image
encoder along with the template image. If text descriptions are
not available, a pre-trained MLLM, i.e., OFA [42], will be used
to generate a set of text descriptions. The descriptions help
disambiguate the behavior of the target and the interactions in
complex scenes, which tends to enhance tracking accuracy.

We first extract visual features and contextual prompts
from both the search region and the template image and
the text descriptions using an image encoder and a text
encoder, respectively. In this study, we used the pre-trained
BERT [43] and Resnet101 [44] as the text and image encoders,
respectively. The contextual prompts serve as a bridge between
scene understanding and target representation. They encap-
sulate the semantic information from the text descriptions,
guiding feature extraction to align with the dynamic interplay
between the target and the surrounding environment.

The visual features and contextual prompts are then fused
using a dual attention mechanism that we design, to generate
the more discriminative features. Within the dual attention
mechanism, we first use a Channel Attention Block (CAB)
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Fig. 3: The pipeline of the online tracking using the proposed SU-STTrack. Specifically, SU-STTrack combines visual features
and linguistic contextual prompts by means of a dual attention mechanism. The features fused are then sent to an encoder-
decoder network. The output is fed into a fully convolutional network and the result is the tracking prediction.

to fuse the deep and shallow visual features. Then visual
features are fused with linguistic features using a second CAB.
The features fused are fed into a Transformer encoder. The
output together with a target query are sent to the decoder.
In this situation, contextual prompts provide the decoder with
crucial semantic cues, ensuring that the tracking predictions
are boosted by the scene context.

Furthermore, the corner-based bounding box prediction
head is used to predict tracking results. In addition, we
propose an experience replay strategy that stores confident
tracking results as new template candidates. When updating
the template, historical templates are randomly selected to be
merged with the new template.

B. Contextual Prompt-Based Feature Extraction

For vision-language data sets, we use the Bidirectional
Encoder Representations from Transformers (BERT) [43] en-
coder to extract frame-wise linguistic features which are used
as contextual prompts. Whether these prompts are explicitly
provided or are generated using a captioning model, they en-
capsulate the critical scene-level information that complements
the visual features extracted using the image encoder. The
input text T is tokenized into subwords and embedded into a
set of vectors. These vectors are then passed through multiple
Transformer layers, to produce a sequence of contextualized
embeddings. This process can be expressed as:

H = BERT(T ) = [h1, h2, . . . , hn], (1)

where H represents the sequence of hidden states at the final
layer of BERT, and hi denotes the hidden state corresponding
to the ith token. To obtain a fixed-dimensional representation
of the entire text, we use the hidden state of the classification
token, which is designed to capture the aggregate information
of the sequence:

f l = HCLS . (2)

The linguistic feature vector f l ∈ R1×B×C is used as contex-
tual prompts in conjunction with visual features for subsequent
frame tracking. To achieve shape alignment during cross-
modal feature fusion, we also expand text prompt vectors in
order to match the shape of image features fv ∈ RWH×B×C .

Regarding vision-only data sets, we generate text descrip-
tions using a caption generator model, namely, OFA [42], as
contextual prompts from the visual content. OFA is a versatile
MLLM, which is capable of handling multiple vision and lan-
guage tasks, including image captioning. The text descriptions
generated for the given initial frame I from the sequences are
produced by the OFA [42] model, which summarizes the visual
content. The descriptions are then fed into the BERT encoder,
to extract linguistic features, following the same process as
described above and ensuring the consistent feature extraction
across both vision-language and vision-only data sets.

Given a frame, we use the pre-trained ResNet-101 model
as the image encoder to extract visual features, which capture
both low-level and high-level characteristics of the target
and its surroundings. Both the visual features and contextual
prompts are sent to the feature fusion module built on top of
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Algorithm 1 Online Tracking Algorithm at Time t

1: Input:
2: Case 1: Image I and text description D
3: Case 2: Only image I

Initialization: Crop search region S and initialize tem-
plate T .

4: Feature Extraction:
5: if Case 2 then
6: Generate description: D ← TextGenerator(I)
7: end if
8: Extract linguistic features: f l ← TextEncoder(D)

(Equation (2))
9: Extract template features: f t ← ImageEncoder(T )

10: Extract search features: fs ← ImageEncoder(S)
11: Feature Fusion:
12: Fuse high- and low-level features: f t ← CAB(f t)
13: Fuse high- and low-level features: fs ← CAB(fs)
14: Combine visual features: fv ← f t + fs

15: Fuse visual and linguistic features: f ← CAB(fv, f l)
16: Bounding Box Prediction:
17: Predict corner: (x̂tl, ŷtl), (x̂br, ŷbr) (Equations (9-12))
18: Template Update:
19: Update the template bank with confident results

(Algorithm 2)
20: Repeat: Perform steps 3 to 19 for all frames in the

sequence.
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Fig. 4: Architecture of the proposed Channel Attention Block
(CAB).

the dual attention mechanism.

C. Adaptive Multi-modality Feature Fusion

It is known that low-level features contain abundant spatial
details and essential discriminative cues but lack the semantic
information. In contrast, high-level features encode rich se-
mantic representation while suffering from the reduced spatial
precision [23], [24], [45]. To jointly exploit both the low-level
and high-level features, we design a Channel Attention Block
(CAB), as shown in Fig. 4. These features are fused using
a CAB in order to obtain a compact image representation.
In addition, we enrich the tracking model with the additional
contextual information by fusing the visual features and the
linguistic contextual prompts using a seconod CAB, enhancing
its ability to understand and track the target.

Specifically, the CAB first applies a 1 × 1 convolution in

order to reshape the low-level features fLow. This operation
aligns these features with the dimensionality of the high-
level features fHigh. The low-level features reshaped are then
concatenated with the high-level features, forming a set of
composite feature maps. Channel attention weights are further
computed using a sequence of operations, including the global
average pooling, a 1 × 1 convolution, a ReLU activation, a
second 1 × 1 convolution and the Sigmoid function, which
can be formulated as:

fConcat = Concat(Conv1×1(fLow), fHigh), (3)

ω = Sigmoid(Conv1×1(ReLU(Conv1×1(GAP(fConcat))))).
(4)

The weights ω are applied to the low-level features, producing
a series of weighted feature maps. Finally, the high-level
features and the weighted low-level features are fused using
the addition operation, which can be expressed as:

fv = ω ⊗ fLow + fHigh. (5)

In essence, the CAB dynamically emphasizes key features by
assigning channel-wise attention weights. Thereby, it selec-
tively enhances the important components of the feature maps.

As a global semantic embedding, linguistic features provide
contextual scene constraints that are critical for the scenarios
where target movement is influenced by its surrounding envi-
ronment. Therefore, we extend the CAB in order to incorporate
textual scene descriptions into the visual feature space. In
other words, the CAB can also be utilized for combining the
linguistic and visual features except being used to fuse the
low-level and high-level visual features. This operation can be
formulated as:

f = ω′ ⊗ f l + fv. (6)

As a result, an overall feature representation can be obtained
across the two modalities, which encodes not only the visual
characteristics but also the scene understanding information.

D. Prediction

The prediction module consists of an encoder, a decoder
and a fully convolutional prediction head. Both the encoder
and decoder comprise a set of Transformer blocks, which are
able to capture the long-range dependencies.

In terms of the encoder, multi-modality feature maps f
depicted in Equation (6) are first flattened. The features
flattened are then processed in order to capture the long-range
dependencies and enrich them with the global contextual infor-
mation. As a result, the localization ability of the model trained
can be improved. Given that V corresponds to the processed
features, K represents the template features, Q represents the
query and

√
dk is the scaling factor, the multi-head attention

mechanism used in the encoder can be expressed as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V. (7)

With regard to the decoder, a single query (Q′) is used
to predict tracking results while the key and value pairs
(K ′, V ′) represent the features extracted from the template and
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search region by the encoder. In addition to the self-attention
mechanism, each decoder block contains an encoder-decoder
attention mechanism [27], which can be formulated as:

EncDecAttention(Q′,K ′, V ′) = softmax
(
Q′K ′T
√
dk′

)
V ′. (8)

This mechanism allows the target query to visit all positions
within the template and search region patches. Hence, the more
comprehensive information can be captured.

For the purpose of predicting the bounding box surrounding
a target, the prediction head computes the similarity score
between the features extracted from the search region and
the output of the decoder. To emphasize the discriminative
areas, the score, which reflects the confidence level, is element-
wise multiplied with the search region features. The processed
features are then passed through a fully convolutional sub-
network, which comprises four sequential customized convo-
lutional layers. Each layer captures hierarchical feature repre-
sentations. Within the layer, batch normalization ensures the
stable and efficient training and the ReLU function improves
the ability of the model to learn complex patterns by introduc-
ing the non-linearity. Following the last layer, a convolutional
layer and the softmax function are used to convert the feature
maps into a set of probabilities. Finally, the coordinates of
the corners of the bounding box are predicted on top of the
probabilities. The prediction operation can be illustrated as:

x̂tt =

∫∫
Ω

x · Ptl(x, y) dx dy, (9)

ŷtt =

∫∫
Ω

y · Ptl(x, y) dx dy, (10)

x̂br =

∫∫
Ω

x · Pbr(x, y) dx dy, (11)

ŷbr =

∫∫
Ω

y · Pbr(x, y) dx dy, (12)

where x̂tl denotes the x-coordinate of the top-left corner,
Ptl(x, y) is the probability produced by the prediction head
and Ω stands for the search region.

E. Experience Replay

For the purpose of enhancing the robustness and adaptability
of the tracking operation, we introduce an experience replay
strategy by periodically updating the tracking template based
on accumulated experiences, as illustrated in Algorithm 2.
Specifically, the bounding box region given is used as the
initial template for the first frame. At a regular interval, TE , the
confidence score of the tracking region predicted is computed
using a fully convolutional sub-network that we described in
Section III-D. If the confidence score exceeds a predefined
threshold τ , the result is considered reliable, which can be
treated as a new template. This template is then cropped from
the original image and is appended to a list of candidate
templates for future use.

At each template update interval, TU , we randomly select a
historical template from the candidate list and combine it with

Algorithm 2 Experience Replaying Strategy

do
if t % TE == 0 and confidence t ≥ τ :

E = E.append(result t)
if t % TU == 0 and |E| ≥ λ :

new template = random choice(E)
templatet+1 = α · templatet + β · New template

while 1 < t < T

the current template using a weighted multiplication operation.
This operation can be formulated as:

Tt+1 = α · Tt + β · Random(E), (13)

where Tt represents the confident tracking result at the current
frame, E denotes the pool of historical templates, and α and β
stand for the weighting coefficients which control the balance
between the historical templates and the new representation.
Specifically, α adjusts the emphasis on the newly captured
template, which ensures the adaptability to the latest scene
context. On the other hand, β controls the weight assigned to
the historical templates, which represents the reliance of the
tracker on the past observations. The weighted multiplication
operation enhances the robustness of the tracker, which ensures
that the historical information is seamlessly integrated with the
latest tracking results.

IV. EXPERIMENTS

In this section, we first report the experimental setup in
which the details of the training and inference stages are
introduced. Then we compare the proposed tracker with nine
vision-language and 14 vision-only baseline methods on six
publicly available data sets. Finally, a series of ablation exper-
iments are conducted in order to examine the effectiveness of
the components of the proposed approach.

A. Experimental Setup

Our tracker was implemented using Python 3.6 and PyTorch
1.7. The offline training was conducted on a workstation with
two NVidia 3090 Graphics Processing Units (GPUs). The
inference process was run on a single NVidia 3090 GPU. In
total, four training data sets were utilized, including LaSOT
[17], RefCOCO [46], TNL2K [47] and OTB99-Lang [33].
With regard to the image and text encoders, the pre-trained
ResNet [44] and BERT [43] were used, respectively. The
images and phrases contained in the training sets of LaSOT,
OTB99-Lang, RefCOCO and TNL2K were used to train the
proposed SU-STTrack.

Following the existing study [30], we conducted the offline
training operation in two stages, in which the network was
trained for 500 epochs and 50 epochs, respectively. Within the
first stage, both the feature fusion module and the Transformer
network were trained while the image and text encoders and
the prediction head were kept frozen. During the second stage,
only the prediction head was trained and the other modules
of the entire network were kept frozen. The batch size was



7

set to 32. We employed the Adam optimizer with the weight
decay of 10−4. The initial learning rate was set to 10−4

and was decreased to 10−5 after 400 epochs. We utilized
horizontal flip and brightness jittering for data augmentation.
The resolutions of the search and template images were set
to 384×384 pixels and 192×192 pixels, respectively. The
dynamic templates were updated when the update interval of
200 had been reached by default, where the template with the
highest score was selected as an online sample. The confidence
threshold was set to 0.6.

The One Pass Evaluation (OPE) scheme was utilized, in
which the tracker was initialized on the first frame and
performance was evaluated until the last frame did not require
re-initialization [48]. The overlap, also known as the success
plot, measures the Intersection over Union (IoU) between the
bounding box predicted and the ground-truth bounding box
across all the frames in a sequence [48]. The Area Under the
Curve (AUC) [48] metric can be computed on top of the IoU
values. We used AUC, precision [48] and normalized precision
[49] to measure the performance of the tracking task.

B. Main Experiments

We applied the proposed SU-STTrack and existing trackers
to the vision-language and vision-only tracking tasks. The
quantitative results are reported in Table I. It can be seen
that our method outperformed its counterparts on both the
TNL2K [47] and LaSOText [50] data sets while performed
slightly worse than VLTTT [51] and TransVLT [34] on the
LaSOT [17] data set in the vision-language tracking task. In
addition, the visualization of the results obtained using our
method and six baselines are shown in Fig. 5. As can be
observed, SU-STTrack was able to maintain robustness when
suffering interference from motion blur, out of view, viewpoint
change, illumination variation and occlusion.

1) Vision-Language Tracking Task: Regarding the vision-
language tracking task, we evaluated the proposed SU-
STTrack together with ten baselines on three challenging
language-guided tracking benchmarks, including TNL2K [47],
LaSOT [17] and LaSOText [50].

TNL2K: As a large-scale benchmark for natural language
tracking tasks, the TNL2K [47] data set contains 2,000 di-
verse video sequences. In total, over 1.2 million frames are
included in this data set. Each frame was annotated with
both bounding boxes and corresponding English sentences.
The TNL2K data set poses challenges in both the visual
and linguistic understanding due to its diversity in scene
categories and object appearances. As shown in Table I, our
method achieved improvements of 0.011 in AUC and 0.124 in
normalized precision compared to TransVLT [34]. Also, the
proposed SU-STTrack performed comparably to the state-of-
the-art vision-language tracker, JointNLT [57]. These results
show the advantage of integrating the linguistic data with the
visual characteristics, which enables the model trained to better
capture the semantic information from the global scene.

LaSOT: The LaSOT [17] data set was collected for the
long-term tracking task with difficult attributes, such as rapid
motion, occlusions and background clutter. This data set

consists of 280 videos with an average sequence length of
2,448 frames. It provides extensive test videos for the trackers
designed for prolonged sequences. LaSOT [17] also includes
fine-grained text descriptions that enrich the challenges of
the data set. As presented in Table I, our approach out-
performed the majority of the baselines, except VLTTT [51]
and TransVLT [34]. In particular, SU-STTrack achieved an
increase of 0.016 over JointNLT [57] and an increase of 0.088
over SNLT [54] in terms of the AUC metric.

LaSOText: The LaSOText [50] data set is an extended ver-
sion of LaSOT [17] by introducing additional video sequences
and text descriptions, which makes it more challenging. This
data set is particularly useful for testing the generalization
capability of trackers across diverse conditions due to the great
differences between the training and testing sets. As depicted
in Table I, SU-STTrack achieved a gain of 0.044 in terms
of the AUC metric, compared to the state-of-the-art VLTTT
[51] method, in such challenging vision-language tracking
scenarios, showing its adaptability to novel environments.

2) Vision-Only Tracking Task: We also assessed SU-
STTrack along with 14 baselines on three vision-only bench-
marks, including NfS [60], OTB [48] and UAV123 [59], for
the vision-only tracking task.

UAV123: The UAV123 [59] data set was captured using
an Unmanned Aerial Vehicle (UAV). This data set consists
of 123 fully high-resolution video sequences with an average
length of 915 frames per video, 10 object categories and 12
challenging attributes. Using the UAV123 data set, as reported
in Table I, the AUC, precision and normalized precision
values that SU-STTrack achieved were 0.646, 0.856 and 0.806,
respectively. In contrast to SiamRPN++ [23], our method
outperformed it by 0.033 in terms of the AUC metric.

NfS: The NfS [60] data set was collected for high-frame-
rate visual tracking tasks, in which fast-moving targets were
captured with challenging attributes. We used the 30 FPS
version of the Need for Speed subset. As shown in Table I,
SU-STTrack gained an improvement of 0.013 in terms of the
AUC metric compared with ATOM [24].

OTB100: Due to the comprehensiveness and the challenges
that the OTB100 [48] data set presents, it has been widely
utilized for tracking tasks. As reported in Table I, our SU-
STTrack performed the best among the 14 trackers with the
AUC, precision and normalized precision values of 0.718,
0.904 and 0.872, respectively. In particular, the proposed SU-
STTrack outperformed the recent state-of-the-art ToMP [69]
and SeqTrack [36] methods by the margins of 0.017 and 0.022,
respectively, with regard to the AUC metric.

3) Performance Analysis: We analyzed the performance
of SU-STTrack in terms of inference speed (Frames Per
Second or FPS), computational complexity (Floating-Point
Operations Per Second or FLOPs) and model size (number of
parameters). As shown in Table II, our SU-STTrack processed
video sequences at an impressive speed of 36.3 FPS, which
outperformed five state-of-the-art trackers. Furthermore, our
model has an FLOPs of 20.4G and a total of 47.2 million
parameters. It is suggested that our SU-STTrack achieved a
proper balance between computational complexity and model
size. In contrast, the two lightweight models, i.e., SiamRPN++
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TABLE I: COMPARISON BETWEEN THE PROPOSED SU-STTRACK WITH TEN AND FOURTEEN BASELINES ON THE VISION-
LANGUAGE AND VISION-ONLY DATA SETS, RESPECTIVELY. THE TOP THREE RESULTS ARE HIGHLIGHTED IN THE BOLD,
UNDERLINED AND ITALIC FONTS, IN TURN.

Tracker Type Method Source TNL2K [47] LaSOT [17] LaSOText [50]

AUC (↑) P (↑) PNorm (↑) AUC (↑) P (↑) PNorm (↑) AUC (↑) P (↑) PNorm (↑)

Vision-Language

Wang et al. [52] arxiv2018 - - - 0.277 0.304 - - - -
Feng et al. [53] WACV2020 0.250 0.270 0.340 0.500 0.560 - - - -

SNLT [54] CVPR2021 - - - 0.540 0.574 0.636 - - -
GTI [55] TCSVT2021 - - - 0.478 0.476 - - - -

TNL2K-II [47] CVPR2021 0.420 0.420 0.500 0.513 0.554 - - - -
Li et al. [56] CVPRW2022 0.440 0.450 0.520 0.530 - 0.560 - - -
VLTTT [51] NeurPS2022 0.547 0.553 0.718 0.673 0.715 0.802 0.484 0.543 0.599

TransVLT [34] PRL2023 0.558 - 0.616 0.660 0.698 - - - -
JointNLT [57] CVPR2023 0.569 0.581 0.736 0.604 0.636 0.735 - - -

QueryNLT [58] CVPR2024 0.533 0.530 0.704 0.542 0.550 0.625 - - -
SU-STTrack Ours 0.569 0.572 0.740 0.628 0.660 0.754 0.528 0.565 0.613

Tracker Type Method Source UAV123 [59] NfS [60] OTB100 [48]

AUC (↑) P (↑) PNorm (↑) AUC (↑) P (↑) PNorm (↑) AUC (↑) P (↑) PNorm (↑)

Vision-Only

SiamRPN [39] CVPR2018 - - - - - - 0.637 0.851 -
DeepSCDCF [61] CVPR2018 - - - - - - 0.631 - -

ATOM [24] CVPR2019 0.650 - - 0.590 - - 0.671 - -
SiamRPN++ [23] CVPR2019 0.613 0.807 - - - - 0.696 0.914 -

DiMP [62] ICCV2019 0.654 0.856 - 0.620 - - 0.684 - -
KeepTrack [63] ICCV2019 0.697 - - 0.664 - - 0.701 - -

Siamese R-CNN [64] CVPR2020 0.649 - - 0.639 - - 0.701 - -
TransT [29] CVPR2021 0.691 - - 0.657 - - 0.694 - -

OSTrack-256 [65] ECCV2022 0.683 - - 0.647 - - - - -
BeamTracking [66] TIP2022 0.668 0.773 - - - - 0.653 0.886 -

AiATrack [67] ECCV2022 0.706 - - 0.679 - - 0.696 - -
Mixformer-L [68] CVPR2022 0.695 0.910 - - - - - - -

TOMP101 [69] CVPR2022 0.669 - - 0.667 - - 0.701 - -
SeqTrack-B384 [36] CVPR2023 0.692 0.900 0.848 0.676 0.829 0.850 0.696 0.908 0.858

SU-STTrack Ours 0.646 0.856 0.806 0.603 0.716 0.740 0.718 0.904 0.872

TABLE II: COMPARISON BETWEEN THE PROPOSED SU-
STTRACK AND SIX BASELINES IN TERMS OF THE INFER-
ENCE SPEED, COMPUTATIONAL COMPLEXITY AND NUMBER
OF PARAMETERS.

Tracker Speed (FPS) FLOPs (G) Params (M)

JointNLT [57] 39.0 [57] 34.9 [57] 153.0 [57]
SiamRPN++ [23] 35.0 [23] 48.9 [23] 54.0 [23]
SeqTrack-B384 [36] 15.0 [36] 148.0 [36] 89.0 [36]
ATOM [24] 30.0 [24] - -
TOMP101 [69] 19.6 [69] - -
KeepTrack [63] 18.3 [63] - -
SU-STTrack (Ours) 36.3 20.4 47.2

[23] and SeqTrack-B384 [36], used 54.0 and 89.0 million
parameters, respectively. By referring to the results reported in
Table I, it has been demonstrated that SU-STTrack achieved a
good trade-off between accuracy and inference speed, com-
putational complexity and model size. In other words, our
method produced the promising tracking accuracy without
using excessive parameters and sacrificing the inference speed.

4) Cross-Domain Generalization: To further evaluate the
cross-domain generalization capability of our pre-trained
model, we conducted an additional experiment on the
UVOT400 [72] underwater tracking data set. In contrast to
the training data set that we used, this data set was captured
in a more challenging unseen domain, characterized by turbid

water, low contrast and dynamic lighting conditions. As shown
in Table III, our pre-trained model achieved an AUC value of
48.2%, which was higher than the values produced by six
baselines. It is indicated that our SU-STTrack has a good
cross-domain generalization capability.

5) Limitations: Although SU-STTrack was designed in
order to accommodate both vision-language and vision-only
data sets, it may struggle with vision-only data sets due to
the robustness of the text description generation operation.
Specifically, the image captioning model, i.e., OFA [42], was
originally introduced for the purpose of generating a caption
for the visual content of an image. This model normally
serves as a proxy for natural language annotations. However,
the captions generated may not consistently capture the se-
mantic complexity of the scene or accurately represent the
fine-grained details of a target. Consequently, the captions
generated may result in ambiguous or inaccurate descriptions,
particularly in the cases where the appearance of an target is
subtle or the surrounding is intricate.

Furthermore, the use of pre-trained Large Language Models
(LLMs) may introduce risks of propagating biases. Given that
multiple models process the output iteratively, minor errors
may compound into a significant deviation, particularly in the
Single Object Tracking (SOT) area because noisy captions
usually confuse the target representation. Due to the reliance
on single-source human evaluations, image captioning models
also tend to treat subjective assessments as the objective truth.
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Ours SiamRPN [39] DeepSRDCF [61] ECO [70] GradNet [71] MMTrack [37] JointNLT [57]

Fig. 5: Visualization of the results of our tracker and six state-of-the-art baseline trackers on the challenging sequences contained
in the OTB100 [48] and TNL2k [47] data sets. Specifically, the challenges include motion blur (1st and 2nd rows), illumination
variation and low resolution (3rd row), viewpoint change (4th row), out-of-view (5th row) and scale variation and full/partial
occlusion (6th row).

Besides, there exists a risk of introducing noise or redundant
information from the captioning model, which could impair the
performance of the tracker, in particular, in challenging sce-
narios characterized by heavy occlusion or background clutter.
Although the use of caption generation enables SU-STTrack to
be applied to both the vision-language and vision-only tracking
tasks, further improvements in the text description generation
quality or use of alternative methods for enriching the visual

information should be explored in the future, to effectively
bridge the gap between both the tracking tasks.

As illustrated in Fig. 6, the initial textual description “the
middle elephant in the last row” becomes invalid as both
the elephant herd and camera perspective gradually shift
from frame 11 in the sequence Elephant video 5. The target
position has moved to the leftmost column of the last row at
frame 35, rendering the initial description obsolete. Significant
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TABLE III: COMPARISON BETWEEN SIX PRE-TRAINED TRACKERS AND OUR PRE-TRAINED MODEL ON THE UVOT400 [72]
DATA SET IN TERMS OF THE AUC, PRECISION AND NORMALIZED PRECISION METRICS.

Metric ATOM [24] STARK [30] DiMP-50 [62] PrDiMP [73] TrTr [28] SiamRPN [39] Ours

AUC (↑) 0.433 0.434 0.421 0.420 0.452 0.475 0.482
P (↑) 0.376 0.404 0.363 0.366 0.429 0.439 0.477
PNorm (↑) 0.517 0.499 0.496 - 0.554 0.579 0.550

TABLE IV: THE EFFECT OF CONTEXTUAL PROMPTS AND
EXPERIENCE REPLAY ON THE PROPOSED SU-STTRACK
WHEN THE LASOT [50] DATA SET IS USED.

Contextual Prompts Experience Replay AUC P PNorm

% % 0.595 0.616 0.698
" % 0.613 0.645 0.734
% " 0.597 0.623 0.698
" " 0.628 0.659 0.754

tracking drift occurs at frame 111 due to the interference
from visually similar elephants and background color resem-
blance. Given the description “the third girl on the second
column”, the viewpoint begins rotating at frame 51 in sequence
CheerTeam video 09. While tracking remains robust during
the rotation process, reconstructed spatial relationships after
rotation cause the bounding box to be incorrectly associated
with a non-target individual which matches the description.

C. Ablation Study

To investigate the effectiveness of the components of SU-
STTrack, we conducted a series of ablation experiments. For
simplicity, only the LaSOT [50] data set was utilized.

1) Effect of Contextual Prompts: For the purpose of examin-
ing the impact of contextual prompts on SU-STTrack, we con-
ducted an ablation experiment by removing the text encoder
branch while retaining the image encoder branch. Without
contextual prompts, the model only relied on the visual cue.
Hence, its ability to incorporate the broader scene context was
impaired. As shown in Table IV, our method always performed
better when contextual prompts were available than that it
conducted without using these prompts, no matter whether the
experience replay module was used or not.

2) Effect of the Dual Attention Mechanism: The proposed
dual attention mechanism contains a multi-level CAB and
a multi-modality CAB. To examine the impact of the dual
attention mechanism on SU-STTrack, we further conducted an
ablation experiment by removing the multi-level CAB and/or
the multi-modality CAB. As reported in Table V, SU-STTrack
with the dual attention mechanism performed better than that
without the multi-level CAB and/or the multi-modality CAB.

3) Effect of Experience Relpay: We also investigated the
effect of the experience replay strategy on our SU-STTrack
through replacing the experience replay module by a simple
template updating approach which only utilized the most
recent frame. It can be obsered from Table IV that the absence

TABLE V: EFFECT OF THE DUAL ATTENTION MECHANISM
ON THE PROPOSED SU-STTRACK WHEN THE LASOT [50]
DATA SET IS USED.

Multi-level Attention Multi-modality Attention AUC P PNorm

% % 0.613 0.628 0.713
" % 0.610 0.623 0.710
% " 0.596 0.616 0.699
" " 0.628 0.659 0.754

of the proposed experience replay module led to a performance
decline with or without the contextual prompts.

4) Effect of the Parameters of Experience Replay: The pro-
posed experience replay strategy is a crucial component of SU-
STTrack during the online tracking task. The two parameters
α and β in Equation (13) are key to determining the degree of
consideration of historical templates in the subsequent frames
versus the newly captured templates. When α and β are set to
1 and 0, respectively, SU-STTrack solely relies on the template
of the current frame, ignoring the historical information. On
the other hand, SU-STTrack is only focused on the historical
information and template update is ceased in the case that α
and β are set to 0 and 1, respectively. Therefore, a trade-off
between the two parameters is required for achieving tracking
robustness. To investigate the impact of the two parameters on
SU-STTrack, we tested different combinations of the α and β
values. The results are shown in Fig. 7. It can be seen that the
best result was produced when both α and β were set to 0.5,
which balanced the use of the current and historical templates.
In this case, the AUC value obtained was 0.628.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel single-object tracking
method with the linguistic contextual prompts encoded using
a pre-trained Large Language Model (LLM). The method was
referred to as SU-STTrack, which can be applied to both the
vision-language and vision-only tracking tasks. To be specific,
either the text descriptions given or that generated using a pre-
trained Multi-modal Large Language Model (MLLM) were
employed as the context information. SU-STTrack merged the
contextual prompts extracted from the descriptions with visual
features using a dual attention mechanism that we introduced
on top of the Channel Attention Block (CAB), to strengthen
tracking robustness and adaptability. In addition, an experience
replay strategy was proposed for the sake of maintaining the
long-term tracking performance by periodically refreshing the
tracking template with accumulated experiences. This strategy
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Ours MMTrack [37] JointNLT [57]

Fig. 6: Visualization of the results of our tracker and two state-of-the-art baseline trackers on the challenging sequences
contained in the TNL2k [47] data set.
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Fig. 7: Effect of different combinations of the α and β
parameters used by the experience replay strategy on SU-
STTrack when the LaSOT [50] data set is utilized.

is able to prevent the inference from catastrophic forgetting.
Extensive experiments demonstrated the effectiveness of our
SU-STTrack. The promising results should be due to the
ability that our SU-STTrack manifested to integrate different
modalities of features and leverage the historical information.

In our future work, we will explore the dynamic tracking
strategy adaption approach based on reinforcement learning
and extend the proposed SU-STTrack to multi-object tracking.
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